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Kinetically constrained lattice models of glasses introduced by Kob and Andersen
(KA) are analyzed. It is proved that only two behaviors are possible on hypercu-
bic lattices: either ergodicity at all densities or trivial non-ergodicity, depending
on the constraint parameter and the dimensionality. But in the ergodic cases,
the dynamics is shown to be intrinsically cooperative at high densities giving rise
to glassy dynamics as observed in simulations. The cooperativity is characterized
by two length scales whose behavior controls finite-size effects: these are essential
for interpreting simulations. In contrast to hypercubic lattices, on Bethe lattices
KA models undergo a dynamical (jamming) phase transition at a critical den-
sity: this is characterized by diverging time and length scales and a discontinuous
jump in the long-time limit of the density autocorrelation function. By analyz-
ing generalized Bethe lattices (with loops) that interpolate between hypercubic
lattices and standard Bethe lattices, the crossover between the dynamical transi-
tion that exists on these lattices and its absence in the hypercubic lattice limit is
explored. Contact with earlier results are made via analysis of the related Fred-
rickson–Andersen models, followed by brief discussions of universality, of other
approaches to glass transitions, and of some issues relevant for experiments.

KEY WORDS: Kinetically constrained lattice gases; glassy dynamics; ergodic-
ity-breaking transition.

1. INTRODUCTION

The glass transition – whether a true transition or a sharp crossover in the
dynamics – is one of the longest standing unsolved puzzles in condensed
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matter physics. Many liquids, when cooled fast enough to avoid crystalliza-
tion, initially remain liquid but at lower temperatures appear to freeze into
solid-like structures that nevertheless show no signs of crystalline order.
The time scales for structural relaxation in such metastable super-cooled
regimes increase dramatically as the temperature is lowered and materi-
als are conventionally called glasses when the structural relaxation times
are longer than those accessible in typical experiments. In fragile liquids
the relaxation time τ increases more rapidly than Arrhenius(1,2) and can
be characterized by an effective activation free energy d log τ/d(1/T ) that
increases by as much as a factor of twenty over a narrow temperature
range.(2) Moreover, near glass “transitions”, relaxation processes typically
become complicated,(1) often characterized by stretched exponential decay
of temporal correlations. Concomitantly, persistent spatial heterogeneities
appear in both experiments(3,4) and numerical simulations.(5–8)

Yet, in spite of a great deal of theoretical effort over the past few
decades, a real understanding of these and related phenomena is still lack-
ing. Indeed, the most basic issues are still unresolved: Is the rapid slowing
down due to proximity to an equilibrium phase transition of some kind
(albeit perhaps in a restricted part of phase space)? Or is the underlying
cause entirely dynamical? The latter scenario is supported by the lack of
evidence for a diverging static correlation length and the weak tempera-
ture dependence of structural correlations,(2) while growing dynamical cor-
relation lengths have been found in both experiments and simulations.(3,8)

Whether or not there is an actual transition of some kind, what is the
physical mechanism responsible for the slowing down of the dynamics and
the growth of dynamical length scales?

Theoretical progress has been hampered by a shortage of models that
capture at least some of the features believed to be essential, yet are sim-
ple enough to analyze. In other fields of statistical physics simple mod-
els have played vital roles leading to new understanding, to sharpening of
questions, and to development of improved models.

1.1. Kinetically Constrained Lattice Models

One of the few types of simple models for glasses are the kinetically
constrained models, in particular, lattice models with constrained dynam-
ics; for reviews see. refs. 9, 10. In this paper, we focus on a particularly
simple class of models introduced by Kob and Andersen (KA).(11) Before
introducing these KA models and presenting our results, we give a short
overview of kinetically constrained models more generally, including their
motivation and the key questions about their behavior that could provide
a deeper understanding of glass transitions in real systems.
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The basic Ansatz that motivates kinetically constrained models (see
e.g. ref. 12) is that the key to glass transitions is the geometrical con-
straints on rearrangements of the atoms or molecules and the effects of
these constraints on the dynamics; static correlations, beyond those pres-
ent in dense liquids, are assumed to play no role. The simplest models,
which include KA models, are stochastic lattice gases with no static inter-
actions beyond a hard core which restricts each site to be occupied by at
most a single particle. The non-trivial aspect of these models arises from
local constraints that are imposed on the motion of particles. Typically, the
dynamics is given by a continuous time Markov process with each particle
attempting, at a fixed rate, to jump to a randomly chosen empty neighbor-
ing site, but such a move is allowed only if the local configuration satisfies
one or more constraints that depend on occupations of other nearby sites.

The motivation for the kinetic constraints in conservative models
arises from the behavior of molecules in dense liquids: the presence of sur-
rounding particles can severely inhibit the motion of a molecule. In par-
ticular, a molecule can be caged by its neighbors in such a way as to stop
it moving a substantial distance until the cage is opened by the motion
of other particles. When caging is ubiquitous, such local constraints can
produce a degree of cooperative behavior that slows down the dynam-
ics: one can readily imagine this to be the underlying mechanism that
causes glass transitions. Since the idea behind the caging picture is that
glass transitions are purely dynamical phenomena, with any changes in
static correlations playing a minor role (see e.g. ref. 12), it is natural to
explore models whose dynamics satisfy detailed balance with respect to
some simple ensemble, in particular the trivial measure that is uniform
over all configurations with the same number of particles: this corresponds
to ignoring static interactions beyond hard cores. (These models are there-
fore quite different from the statically constrained “lattice glass mod-
els” introduced in ref. 13). Because of the neglect of interactions beyond
hard cores, no equilibrium transition can take place in purely kinetical-
ly constrained models; clearly they cannot approximate the behavior of
glass-forming liquids in all regimes, including the supercooling that avoids
crystallization. Nevertheless, despite their simplicity and discrete character,
kinetically constrained lattice models might still capture, at least on some
range of time scales, the key dynamical aspects of real glass transitions.
Indeed, numerical simulations show that some such models do display
sluggish dynamics and much phenomenology that is reminiscent of glassy
behavior and its onset as density increases.(9,10) There has been a renewal
of interest in these models for explaining the behavior of glass-forming
liquids.(12,14–25) Kinetically constrained lattice gases have also been stud-
ied in the context of granular systems(26) which also display a glass-like
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dynamical arrest as their density is increased; this so-called jamming tran-
sition(27,28) occurs at a density well below close–packing density and can
thus not have purely entropic origin.

Note that there is a similar class of kinetically constrained models
whose elementary degrees of freedom are spins and not particles. An impor-
tant example on which we will focus on Section 6 is provided by the
Fredrickson and Andersen (FA) models.(29) These are the non-conservative
version of the previous ones: there is no static interaction among spins on
different sites and the non-trivial aspect arises from the local constraints
imposed on the possible spin flips. In this case, the motivation for kinetic
constraints comes from the concept of dynamic facilitation:(12,29) the evi-
dence of dynamical heterogeneities, i.e. the existence of regions of space
with very different relaxation times suggests that, on a coarse grained level,
supercooled liquids might be considered as a mixture of mobile and non-
mobile regions. The non-conservative character comes from the fact that
the ratio of mobile to non-mobile regions is non-conserved in time. Kinetic
constraints arise from the fact that the vicinity of mobile regions is required
in order to enable (facilitate) mobility in a non-mobile regions.

1.2. Characterization of Possible Glass Transitions

The most crucial questions about kinetically constrained models of
glasses are whether dynamical arrest takes place with increasing density,
and, if so, whether this is the result of some type of sharp transition or
instead a gradual freezing. In either case, one needs to understand the
cooperative nature of the dynamics: in particular, the emergence of grow-
ing length scales that characterize the cooperativity.

We briefly sketch several possible scenarios for glass transitions. The
most striking possibility would be an actual ergodic/non-ergodic transition
at some critical density: this possibility, which corresponds to an analo-
gous conjecture for the nature of the dynamical arrest in glass forming
liquids, is the primary subject of the present paper. Because of the sim-
ple nature of the KA models, this question can be completely separated
from possible changes in equilibrium static behavior. As mentioned above,
for kinetically constrained models whose dynamics conserves the num-
ber of particles and satisfies detailed balance with respect to the uniform
(non-interacting) measure, the trivial distribution that is flat over all con-
figurations with the same density is always stationary and there can be no
equilibrium transition. Nevertheless, due to the constraints on the allowed
particle moves, ergodicity could be broken. Non-ergodicity means that,
starting from an initial distribution which is not orthogonal with respect
to the equilibrium measure, time averages of local quantities would not
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converge to averages over the static equilibrium ensemble(30) even in the
limit of long times. In other words, it corresponds to the existence of sub-
sets of the configuration space which have non-zero measure (w.r.t. the
equilibrium distribution) and in which the system can get trapped for infi-
nite time. This certainly occurs for some kinetically constrained models on
finite lattices for which the configuration space typically breaks into dis-
connected irreducible components: i.e. there exist two or more sets of con-
figurations that can not be connected to one another by any sequence of
allowed moves. A key question is whether this non-ergodicity can persist
in the thermodynamic limit for which the grand canonical ensemble at
fugacity ρ (Bernoulli product measure at density ρ) is an equilibrium dis-
tribution. Specifically, can an ergodic/non-ergodic transition occur at some
density ρc such that the dynamics on the infinite lattice is ergodic for
ρ < ρc, but not ergodic for ρ > ρc? Such an ergodicity-breaking transi-
tion is often considered an ideal glass transition; it has been advocated as
the primary cause of the slowing down of glass-forming liquids. Ergodic-
ity-breaking transitions have been found to occur in several approximate
theories, including in mode coupling theory(31) and in fully connected
quenched random spin models.(32)

A weaker type of dynamical arrest could in principle take place even
if ergodicity is not broken: in particular, a diffusive/sub-diffusive transition
of the dynamics. Indeed, the motion of a tracer particle could become non-
diffusive at high densities: this could be observed by singling out of an infi-
nite system that is in equilibrium, one particle, the tracer, and following
its motion. There exists a general rigorous result that restricts the behav-
ior: as long as the dynamics is ergodic, the position of a tagged particle
converges under diffusive space-time rescaling to Brownian motion with a
density-dependent self-diffusion coefficient DS(ρ)�0.(33,34) But in order for
the tagged particle to diffuse, the self-diffusion coefficient has to be non-
zero: for the normal hard core lattice gas (simple symmetric exclusion) in
d > 1, this has been proven(33) and in ref. 35 the result has been extended
to all the models such that the rate of any given jump to an empty neigh-
bor is bounded away from zero. For kinetically constrained lattice gases,
however, the tagged particle could be slowed enough that DS becomes zero
at sufficiently high density. A diffusive/sub–diffusive transition would then
presumably take place at some critical density, ρD with DS > 0 for ρ <ρD

but DS = 0 for ρ >ρD. Such a transition has been conjectured to occur in
real glasses: and several experiments on supercooled liquids near their glass
transition indeed show a striking decrease of the mean square displacement
of a tracer particle over the observed range of times.(2)

Another way in which diffusion could potentially break down involves
the breakdown of the conventional hydrodynamical limit that usually
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holds on long length and time scales.(34) For lattice gases (and more gener-
ally for systems with particle number conservation but no momentum con-
servation) the coarse-grained density profile evolves, at long times, via the
diffusion equation, ∂tρ = ∇ (D(ρ)∇ρ), with the diffusivity, D(ρ), depen-
dent on the local density. For generic kinetically constrained stochastic
models, proving the existence of the hydrodynamic limit, as has been done
for conventional hard core models, is not a trivial task. The natural con-
jecture, if a transition of some kind did occur, would be the vanishing of
the macroscopic diffusivity, D(ρ), at high densities. This would give rise
to a form of macroscopic arrest, in which density profiles at high densi-
ties would evolve, if at all, only sub-diffusively. Note that, in contrast to
the diffusion of a tagged particle, evolution of density profiles need not
involve motion of individual particles far from their initial neighbors: den-
sity diffusion and self-diffusion thus probe rather different aspects of the
dynamics.

Consideration of the types of macroscopic diffusion raises the more
general question of relaxation towards equilibrium: this could be anoma-
lously slow even if the system remains ergodic at all densities. An inter-
esting quantity to consider is the dynamical structure factor, the Fourier
transform of the density–density correlation function at non-zero wave
vector. For normal lattice gases, the dynamical structure factor decays
exponentially at long times but for kinetically constrained models, the
relaxation could perhaps be slower than exponential, at least above some
critical density. Indeed in numerical simulations of some kinetically con-
strained models at high density, sub-exponential relaxation has been found
over a range of more than three decades.(11) This, as well as the relax-
ation of different response functions (see e.g. refs. 14, 36) is usually fit-
ted with a stretched exponential S(t) ∼ exp[−(t/τ )β ], with β < 1 (also
called a Kohlrausch–Williams–Watts function). Many glass-forming liq-
uids show similar behavior with relaxation functions well-fitted by sim-
ple exponentials at high temperatures, but by stretched exponentials at low
temperatures.(2,37,38) In glass-forming liquids this behavior arises from the
superposition of many relaxations with different decay rates, each corre-
sponding to different spatial regions within a dynamically heterogeneous
spatial structure which persists for longer time scales.(3) If such sub-expo-
nential relaxation does occur in kinetically constrained models – even if
only over a limited range of times – a detailed understanding of it would
shed light on the behavior of more realistic systems.4

4It is important to note that stretched exponential relaxation can occur in the absence of
such complications as heterogeneities: indeed, the two dimensional Ising model with non-
spin-conserving dynamics exhibits just such behavior in its ordered phase.(39)
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Numerical simulations of Kob-Andersen models, as reviewed below,
have found very sluggish dynamics at high density,(11) with much phenom-
enology that is very similar to glass-forming liquids. Is this a signature of
some type of real dynamical glass transition at a critical density? More
generally, does one exists for at least some versions of the KA models?
If not, what is the basic mechanism for the extremely rapid onset of the
slowing down as the density is increased? Are there collective processes
involved? What if any, are the characteristic length scales, and how are the
time scales related to these? What is the physical mechanism giving rise to
the dynamical heterogeneities? And, most importantly, what can one learn
from the KA models about the behavior of more realistic models? In this
paper we will address all of these, although the last, regrettably, only to a
limited extent.

Some of the results of this paper have already been presented in a
short letter(37) and the proof of the positivity of the self-diffusion coeffi-
cient for KA models was presented in ref. 41; these both made use of the
results derived in the present paper.

1.3. KA Models: Definition and Heuristics

Kob–Andersen models were introduced,(11) as mentioned above, to
test the conjecture that cage effects in liquids can induce a sudden onset
of dynamical arrest as the density increases thereby being responsible for
a glass transition in such systems. The conditions for particles to be able
to move in KA models mimic those caused by the geometrical constraints
imposed by surrounding particles on the motion of molecules in dense
liquids.

The Kob–Andersen models we consider are natural generalizations to
higher dimensions of those of ref. 11 (the original model corresponds to
the choice d =3,m=3 in our notation): they are defined on d-dimensional
hypercubic lattices �∈Z

d with zero or one particles allowed per lattice site
and a parameter, m, that represents the set of allowed particle motions as
explained below (for a more formal definition see Section 2.5). Each parti-
cle attempts, at rate unity, to move to a randomly chosen one of its z=2d

nearest neighbor sites. But a move from a site x to a neighboring site y is
allowed only if site y is empty and the particle has no more than m occu-
pied neighbors both before and after the move. If any of these constraints
is not satisfied the particle remains at site x (at least until its next attempt
to move). The possible values of m range from m=0, . . . ,2d −1, the upper
limit being one less than the coordination number, z (due to the hard core
constraint). In the following we will always focus on the grand canonical
ensemble, therefore the control parameter will be the particle density, ρ.
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As the interesting behavior occurs at high densities it is useful to
reformulate the rules in terms of vacancy motion, i.e dynamics of the
empty sites. As can readily be verified, the above constraints with param-
eter m correspond to vacancies allowed to move only if both the initial
site before the move, and the final site after the move, have at least s =
z−m−1 neighboring vacancies. The hypercubic KA models are thus com-
pletely defined by the parameters d and m, or equivalently, d and s; we
will usually use the latter. The special case m=2d −1 corresponds to s =0:
this KA model thus corresponds exactly to conventional hard-core lattice
gas dynamics (i.e. simple symmetric exclusion process).

For all values of s the equilibrium static properties are identical to
those of the hard-core lattice gas model with no other interactions, and
are hence trivial. But the dynamics depends radically on s. For s �d, the
dynamics is so constrained that KA models are trivially non-ergodic at
any ρ ∈ (0,1]. This can be checked by noticing that a fully occupied hyper-
cube of particles of any size can never be broken up, therefore at any finite
density there exists a finite fraction of particles which are forever blocked.
We thus focus on 0<s <d.

Why might one expect interesting dynamics for s � 1? In contrast
to the conventional lattice gas (s = 0) for which individual vacancies can
move freely, for non-zero s on hypercubic lattices, there are no finite mobile
clusters of vacancies that can move freely – albeit together – in an other-
wise fully occupied system. By this we mean that, if the surrounding lattice
is completely filled, it is not possible to construct a path of allowed nearest
neighbor moves through which one can shift the cluster of vacancies. This
follows from the existence of infinite frozen configurations which, as none
of the particles in them can move at all, impede the motion of any clus-
ter of vacancies. The simplest infinite frozen configuration is a fully occu-
pied slab of particles that is infinite in d − s of the lattice directions and
has width two in the other s directions: by construction, none of the parti-
cles in such a slab can move with the KA dynamical rules with parameter
s. (In contrast to the absence of mobile clusters of vacancies on hypercu-
bic lattices with non-zero s, on a two-dimensional triangular lattice with
s = 1, isolated vacancies cannot move but neighboring pairs of vacancies
can move freely and equilibrate the system (see ref. 41 for a detailed and
rigorous discussion).)

Although for non-zero s on hypercubic lattices there are no finite
mobile clusters of vacancies, neither are there finite frozen clusters for
s <d. This follows because a particle at a corner of any fully occupied
region that is surrounded by empty sites can move; thus on an infinite
lattice there are no finite frozen clusters. Nevertheless, there do exist infi-
nite frozen sets of particles such as the completely filled slab defined above.
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Such simple frozen configurations have very little entropy – in fact, zero
entropy density – but a much larger set of frozen configurations exist that
does have non-zero entropy density. For example, for the simplest case,
s = 1 on a square lattice, in addition to configurations with a single two-
wide frozen slab that is infinitely long, any configuration with a set of such
slabs that each begin and end at T-junctions with other such slabs will
be frozen. A crucial question about static configurations is thus whether,
at sufficiently high densities, almost all infinite configurations contain an
infinite – and hence connected – set of frozen particles. As we shall see,
answering this is by no means trivial. For all the non-trivial cases, the
above observations imply that the sluggish dynamics at high densities must
be intrinsically collective, involving rearrangements of increasingly larger
and larger regions as the density increases.

1.4. Previous Numerical Results

Before introducing the analytic methods we will use, we briefly sum-
marize the results of various numerical simulations of the best studied
KA model: the three – dimensional case with s = 2. It has been sug-
gested that these simulations provide support for the conjecture of an
ergodic/non-ergodic transition at a non-trivial density, ρ̄. In ref. 11 the
self-diffusion coefficient of a tagged-particle was measured and the results
found to fit well a power law form that vanished at a finite density: Ds ∝
(ρ − ρ̄)α with α �3.1 and ρ̄ �0.881. Approaching this same apparent crit-
ical density the rate of temporal relaxation of density-density correlations
appeared to vanish as an inverse power of ρ − ρ̄. Both results – which hold
over roughly four decades of DS and two decades of ρ − ρ̄ – were strongly
suggestive of a dynamical glass transition at ρ = ρ̄.

Furthermore, the asymptotic decay of the Fourier transform of
density–density correlation function was fitted with the form S(t) �
exp[(−t/τ )β ] with an exponent β close to one (exponential decay) for low
and intermediate densities and decreasing monotonically with ρ (stretched
exponential decay) at sufficiently high density (for ρ >0.75).

Later work found that other typical features of “glassy dynamics”
occur at high densities in this d =3, s =2 model.

In ref. 20 numerical simulations found dynamical heterogeneities to
be persistent for very long times, at densities higher than roughly ρ̄. In
ref. 21 the effects of boundary sources of particle – corresponding to
a grand canonical ensemble – were studied, in particular by quenching
the chemical potential µ of the sources below the apparent critical value
that corresponds to the equilibrium µ(ρ̄). A non-equilibrium regime was



176 Toninelli et al.

evident, and “aging” effects similar to those observed in glasses were
found. Properties that play roles in various theoretical approaches to glass
transitions have also been studied. In particular, the relationship between
the “configurational entropy” of the number of distinct frozen config-
urations and an “effective temperature” which emerges from the aging
dynamics was investigated to test Edward’s hypothesis(22) as formulated by
Kurchan in the context of aging dynamics; this had been found in certain
mean field models studied in the context of glasses, see ref. 23. Edwards’
hypothesis appears consistent with numerical results on the d =3, s =2 KA
model.(22)

The results announced in ref. 40 and explained in detail in the follow-
ing provide a theoretical framework to interpret numerical simulations. Two
recent works(14,24) have indeed analyzed the d = 3, s = 2 KA model taking
into account our results and checking some of our analytic predictions.

1.5. Summary of Exact Results

From the numerical simulations described above, it is clear that the
dynamics of some KA models is very sluggish at high density and dis-
plays much of the basic phenomenology of glassy dynamics observed in
many experimental systems. Furthermore, there appears to be a rather
sharp onset of the glassy behavior as the density is increased. The ana-
lytical methods of this paper yield an understanding of the mechanisms
underlying the slow dynamics of KA models and address the basic quali-
tative and quantitative questions about them.

The primary question is whether there exists some kind of actual
dynamical transition for the d =3 s =2 (or other) KA model, or whether
the apparent “transition” seen in simulations is only a result of the finite
size and finite time limitations of such simulations. We first investigate
whether an ergodic/non-ergodic transition can occur at a non-trivial den-
sity in KA models. We conclude that, for any dimension and any choice
of the constraint parameter s < d, an ergodic/non-ergodic transition can-
not take place at a non-trivial density ρ ∈ (0,1). In other words, the slug-
gish behavior found in simulations cannot be the mark of an “ideal” glass
transition. More quantitatively, we derive a density dependent character-
istic length scale �(ρ) which separates two different regimes: for sam-
ples with linear dimensions L��(ρ) the configuration space breaks into
many ergodic components; while for those with L � �(ρ) a single ergo-
dic component dominates – although other disconnected components still
exist (a precise definition of �(ρ) is given below). The length, �, whose
dependence on ρ varies with d and s, diverges at high density: �(ρ) ∼
exp exp (c/(1−ρ)) for the d =3 and s =2 model. Therefore, large systems
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of size L3, are likely to appear ergodic only if ρ <ρc(L)=1− (c/ log log L).
Although for smaller sizes the apparent ergodicity breaking takes place at
lower values of the density, the dependence on L is very weak for large
L. Of course, to properly analyze data from simulations, knowledge of the
existence of a cross over length is a key ingredient for disentangling the
finite size effects which will always be limiting at high densities.

The fact that ergodicity holds in infinite systems at all densities
for s < d, does not rule out the possibility of a more subtle type of
dynamic transition at a non-trivial density. In particular, a diffusive/sub-
diffusive transition, if it existed, would explain the apparent vanishing of
the self-diffusion coefficient found in the above-mentioned numerical simu-
lations.(11) We have studied the asymptotic behavior of the diffusion coeffi-
cient, DS , of a tagged particle. The result, discussed in detail in ref. 40, 41,
is that DS is strictly positive at any density ρ < 1, so that a diffusive/sub-
diffusive transition cannot take place. Moreover, this analysis(40) unveils the
nature of the collective processes which are needed for both equilibra-
tion and diffusion at high density. The characteristic time scale, τ , of the
slow cooperative dynamics can be calculated and for the non-trivial cases,
namely s <d, τ diverges faster than any inverse power of 1−ρ as ρ →1.

Given these results for general KA models on hypercubic lattices, an
immediate question arises as to whether KA models can ever exhibit a
transition at a non-trivial density: if this can occur, it raises the possibility
that the surprisingly sharp onset of the slow dynamics observed in simu-
lations in, for example, s = 2, d = 3, might be due to the “ghost” of such
a transition. Experience suggests that the most likely models in which to
find actual transitions are “mean-field-like” models;(32) thus we study KA
models on tree structures, more precisely, Bethe lattices, which often pro-
vide realizations of mean field approximations. We find that on Bethe lat-
tices there exists a critical density, ρc, above which ergodicity is broken and
phase space breaks up into many disconnected components. The transition
at ρc has aspects of both first order and second order transitions.

An interesting question that we leave open for future investiga-
tion is the hydrodynamic behavior of KA models on hypercubic lattices.
Although we conjecture that on large enough length and time scales
hydrodynamics will be valid at any density less than one for ergodic KA
models, this might be very hard to prove. Assuming that the conjecture
is correct, an important issue, related to both experiments(42) and sim-
ulations(8) of glass-forming liquids, is the characteristic length and time
scale beyond which hydrodynamic behavior sets in, in particular, how these
scales increase with density.

A recent interesting analysis of this behavior within Kinetically Con-
strained models have been presented in ref. 25.
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1.6. Outline

The organization of the remainder of this paper is as follows: In
Section 2 we analyze s < d KA models on hypercubic lattices and prove
ergodicity for any density ρ <1. First, in 2.1 we analyze the simplest inter-
esting case, d = 2, s = 1, and prove that with unit probability there exists
an irreducible component of the configuration space in the thermodynamic
limit and find an upper bound, �u(ρ), on the crossover length �(ρ). In
2.2, we extend these results to the case d =3, s =2 originally considered by
KA and in 2.3 derive analogous results for s =1 in general d. The conver-
gence of large systems to the infinite system behavior is studied in 2.1.4;
we prove that for L > �u(ρ) the probability of the maximal irreducible
component goes to one at least exponentially rapidly. Using these results,
in 2.4 we extend the irreducibility proof and find upper bounds for the
crossover length for all s < d. Finally, in 2.5 we prove that irreducibility
of the configuration space implies ergodicity.

Section 3 is devoted to quantitative results on the cross-over lengths.
In 3.1, by using recent bootstrap percolation results to obtain lower
bounds on �(ρ) and combining these with the upper bounds, we find the
asymptotic behavior of the density-dependence of the cross over length, up
to an undetermined constant. In Section 3.2, we calculate the exact value
of this constant for the case d =2 s =1 via the identification of the domi-
nant mechanism which restores ergodicity in large systems at high density.
In 3.3 we formulate an analogous conjecture for the dominant high den-
sity behavior of the original KA model, d =3 s =2.

In Section 4 the physical picture for the cooperative high density
dynamics (which was presented in ref. 40) is explained and related to the
results derived in this paper; details are left for a forthcoming paper.

In Section 5 KA models on Bethe lattices are studied. After recall-
ing (Section 5.1) the definition and some properties of Bethe lattices, in 5.2
and 5.3 recursive relations are derived whose fixed point solution implies
that an ergodicity-breaking transition takes place at a non-trivial critical
density ρc, for any s <k — the branching parameter of the Bethe lattice.
The transition is shown to be discontinuous for s < k − 1 (Section 5.3.1)
but continuous for s =k −1 (Section 5.3.2). The existence and location of
this transition are related to a boostrap percolation transition in 5.3.3. In
Section 5.4, the focus is on quantitative results for Bethe lattice models:
we analyze in some detail the character of the transition in the cases k=3,
s =1 and k =5, s =3 and present results of numerical simulations for the
k = 3, s = 1 model. The behavior of the density–density correlation func-
tion and the corresponding susceptibility are studied, along with the con-
figurational entropy, Sc(ρ). By establishing a lower bound we prove that
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Sc(ρ) jumps to a non-zero value at ρc. We end this section, in 5.5, by
extending to KA model on decorated Bethe lattices: graphs with finite size
loops that interpolate between simple Bethe lattice and finite-dimensional
hypercubic lattices.

In Section 6 we analyze the related FA models, proving, in 6.2,ergo-
dicity at any finite temperature (completing an almost complete proof that
had been given by FA themselves). In 6.3 we give quantitative predictions
on length and time scales for the d =2 two spin facilitated FA model.

Finally, in 7, we draw conclusions and discuss some possible connec-
tions of our results to other theoretical treatments of glass transitions. In
particular, the analogy of KA models on Bethe lattices to fully connected
random p-spin models. We also comment briefly on possible extensions of
KA models and connections to experiments.

2. RIGOROUS RESULTS FOR KA MODELS ON

HYPERCUBIC-LATTICES

In this section we analyze KA models on hypercubic lattices with the
parameter s in the non-trivial range 1 � s � d − 1. We prove that for any
density ρ < 1, on an infinite lattice such KA models are ergodic. In con-
trast, as explained earlier, for larger values of s, s �d, KA models on hyp-
ercubic lattices are non-ergodic for all positive ρ because of the existence
of finite frozen clusters. There are thus only two possible behaviors for
hypercubic lattices: either the KA process in the thermodynamic limit is
ergodic at any density, i.e. ρc = 1, or else it is never ergodic, i.e. ρc = 0;
therefore ergodic/non-ergodic transitions cannot take place in KA models on
hypercubic lattices for any d and s.

The strategy of the proof is as follows. Let � ∈ Z
d be an hypercube

of linear size L. First we identify a component of the configuration space
�� ≡{0,1}|�| and show that it is irreducible, i.e. any two different configu-
rations belonging to this component can be connected to each other by a
sequence of elementary moves allowed by the KA rules. Second, we prove
that, with respect to the natural measure on the space of configurations,
Bernoulli product measure µ�,ρ , the probability of this single irreducible
component goes to unity for L→∞. Finally we prove that, thanks to the
product form of Bernoulli measure, the existence of an irreducible compo-
nent with unit probability implies ergodicity for the infinite system, �=Z

d .
In the first four subsections, we give the first and second steps of the

proof for all choices of d and s, leaving to 2.5 the last step, which is proved
by a general argument that is independent of the specific parameters.

We start with the simplest non-trivial model, d = 2, s = 1, giving the
most details for this case.
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2.1. Irreducibility for d = 2, s = 1

The only non-trivial model on a square lattice is the case s =1: vacan-
cies can move if and only if they have a neighboring vacancy both before
and after the move.

2.1.1. Frameable Configurations

In order to construct the large irreducible component of configuration
space we start by defining a subset of the configurations in it. Specifically,
let us define framed configurations of any square or rectangle as those in
which all the boundary sites are empty (see Fig. 1). We then define as
frameable any configuration from which, by an allowed sequence of ele-
mentary moves, a framed configuration can be reached. As we show below,
any two framed configurations that have the same number of particles can
be connected to one another by a sequence allowed moves; the same then
applies to all frameable configurations by definition.

2.1.2. Irreducibility of Frameable Set

The irreducibility of a set of frameable configurations can be checked
as follows. Note that even though it is not needed for the present purposes
we shall prove irreducibility considering the particles as distinguishable.
This result is important for the proof of the positivity of the self-diffusion
coefficient.(41) Consider a pair of neighboring sites {i, j}, with for exam-
ple particles A and B respectively on {i, j} and j immediately to the right
of i. To prove the needed result, it is enough to show that, for any choice
of the framed configuration, it is possible to perform the permutation of

Fig. 1. A 6 × 6 framed configuration. Filled dots are occupied sites; empty dots vacant
sites.
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Fig. 2. Sequence of allowed elementary moves starting from a generic 6 × 6 framed config-
uration, whose net result is the exchange of two neighboring particles, A and B, inside the
square. Figures in the first line show the elementary moves connecting the initial configura-
tion to a configuration with the bottom row of holes raised by one. By analogous moves
(skipped in the figure) one can lower the top row of holes of two steps. Now (first figure of
second row) particles A and B are “sandwiched” between two rows of holes. The remaining
figures show how to exchange particles A and B starting from this configuration. Note that
no other particles have been moved during this exchange. The configuration which is equal to
the initial one (first line, first figure) on the sites not occupied by A and B can subsequently
be restored by using sequences of moves analogous to those in the first line to raise the one
full row of holes and lower the other one.

A with B leaving at the end of the process all the other particles in their
initial configuration.

Starting from the bottom right corner it is possible to raise the bot-
tom row of holes as shown in first line of Fig. 2, and likewise starting
from the top right corner, to lower the top row of holes. This procedure
can be iterated until the row that contains sites i and j is “sandwiched”
between two rows of holes (first configuration on second line of Fig. 2).
At this point, using the surrounding vacancies, one can easily construct a
path performing the desired permutation of particle A and B from site i

to j (second and third line of Fig. 2). Following this exchange, the ini-
tial configuration of the rest of the lattice can be restored by reversing
the moves of the two rows of holes after which all particles other than A
and B have returned to their original sites. The full procedure can be per-
formed if instead there is a particle and a hole on {i, j}. Since any framed
configuration can be transformed to any other framed configuration with
the same number of particles through a sequence of permutations of near-
est neighbor particles and/or holes, all the framed configurations with the
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same number of particles belong to the same irreducible component. By
definition, so also do all frameable configurations, a much larger set.

2.1.3. Frameable Probability

The next step is proving that, of all configurations with density ρ, the
fraction that are frameable, µ�,ρ(F), approaches one in the limit L→∞.
We will do this by first constructing a large subset of F .

Consider a 4 × 4 configuration which has at its center a 2 × 2 square
of holes – a 2 × 2 framed configuration –and in the surrounding shell
at least two holes adjacent to each side of the inner square. It is easy
to check (see Fig. 3) that such a 4 × 4 configuration is frameable. This
procedure can be iterated to grow an L × L frameable configuration start-
ing from a 2 × 2 nucleus of vacancies and requiring at least two vacan-
cies in each side of each subsequent shell. Therefore, µ�,ρ(F) is bounded
from below by the probability, µ�,ρ(F0), of frameable configurations con-
structed with this procedure from a 2×2 nucleus of vacancies centered at
the origin (Fig. 4):

µ�,ρ(F)�µ�,ρ(F0)= (1−ρ)4
(L−2)/2∏

l=1

(1−ρ2l −2lρ2l−1(1−ρ))4. (1)

Note the as the size of the shell grows, the probability that there are the
requisite number of vacancies on each side increases until becoming close
to unity for sufficiently large shells: specifically when l � 1/(1 − ρ). The
large L behavior of log

(
µ�,ρ(F0)

)
is determined by

4 log(1−ρ)+4
∑

l

log[1−ρ2l −2lρ2l−1(1−ρ)]

�4 log(1−ρ)−4
∑

l

[ρ2l +2lρ2l−1(1−ρ)], (2)

which is a converging series for any ρ < 1. Therefore µ�,ρ(F0) converges
to a non-zero limit when L→∞ at fixed density.

Because of the divergence of the above series for ρ = 1, additional
care is required to analyze the behavior when both ρ → 1 and L → ∞.

Fig. 3. Growing 4 × 4 frameable configurations from a 2 × 2 framed configuration.
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Fig. 4. An 8 × 8 frameable configuration obtained from the growing procedure. The
dashed square indicates the position of the 2 × 2 seed. Note that the density in such
configurations is small near the seed but higher farther away.

Let a(	) ≡ log(1 − ρ2	 − 2	ρ2	−1(1 − ρ)). Since a(	) is increasing in 	, the
following inequality holds:

4a(1)+4
∫ L−2

2

1
d	 a(	) � log µ�,ρ(F0)−4 log(1−ρ)

� 4
∫ L−2

2 +1

2
d	 a(	), (3)

where the last term can be rewritten by using the change of variables y =
ρ2	 and expanding for ρ �1 as

lim
L→∞

∫ L
2

2
d	 a(	)� 1

2(1−ρ)

∫ 1

0
dy

log(1−y +y log y)

y
. (4)

Therefore, by combining Eq. (3) and (4) and using limρ→1(1 −ρ) log(1 −
ρ)=0 we get

lim
ρ→1

lim
L→∞

(1−ρ) log µ�,ρ(F0)=2
∫ 1

0
dy

log(1−y +y log y)

y
(5)

i.e., in the high density limit.5

lim
L→∞

µ�,ρ(F0)≡µ∞,ρ(F0)� e
−
(

2c
1−ρ

)

(6)

5Note that here and in the following we will use for simplicity the loose notation µ∞,ρ (F0)�
e
−
(

2c
1−ρ

)

although the correct mathematical expression is log µ∞,ρ (F0)�−
(

2c
1−ρ

)
up to van-

ishing corrections in the ρ →1 limit.
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with

c=−
∫ 1

0
dy

log(1−y +y log y)

y
. (7)

Moreover from

log µ∞,ρ(F0)− log µ�,ρ(F0) � 2
1−ρ

∫ ρL

1
dy

log(1−y +y log y)

y

� 2
1−ρ

∫ ρL

1
dy(−1+ log y)

= 2
1−ρ

(
ρL log[ρL]−2ρL

)

� −4ρL

1−ρ
(8)

we find that µ�,ρ(F0)�µ∞,ρ(F0) for L�ξ2,1(ρ), defining a characteristic
length, ξd,s(ρ), with

ξ2,1 =− log(1−ρ)/(1−ρ), (9)

which will play an important role in what follows.
We now need to get from the probability, µ�,ρ(F0), of a frameable

region centered at the origin, to the needed result: the probability that
a square of size L is frameable about some center, µ�,ρ(F), converges
to unity for L → ∞. To do this one must consider all the possible posi-
tions for the initial nucleus used in the growing procedure.6 Naively, we
could simply make the argument that in a very large system, it is extremely
unlikely that the system would not be frameable around at least one of the
many possible nuclei. But additional work is required to turn this argu-
ment into a proof since the events that the whole square is frameable
starting from different nuclei are not independent. We postpone the actual
proof to the end of Section 2.3, where we consider the generic d-dimen-
sional case, and here just outline the argument.

The key idea is the following: from the above definition of ξ , the condi-
tions needed to further expand a frameable square of size L� ξ are satisfied
with probability close to one. Therefore, whether or not one can grow frame-
able configurations starting from nuclei at the centers of distinct squares of

6The results obtained hold for the KA model on a finite square lattice with periodic boundary
conditions. In this geometry, any point can be taken as the origin of the growing procedure.
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size ξ are almost independent. By considering that there are O
(
L2/ξ2

)
dis-

joint squares of size ξ inside the L×L square, �, we conclude that µ�,ρ(F)

is almost one for L� ξ/

√
µ∞,ρ(F0)� exp [c/(1−ρ)] and approaches one as

L → ∞. The rigorous version of this argument given in 2.3 completes the
proof of irreducibility in the thermodynamic limit.7

Let us now turn to the analysis of finite size effects. As stated above,
the probability of the irreducible frameable component goes to one when
L → ∞ at any fixed density ρ ∈ [0,1). On the other hand, for any finite and
fixed value of L, the probability of any irreducible component is strictly
smaller than one: blocked configurations exist and therefore the configuration
space is never covered by a single component. Furthermore, when ρ → 1 the
probability µ�,ρ(M) of the maximal irreducible component (the irreduc-
ible component with the highest probability) goes to zero since blocked con-
figurations are more and more important and each one is in a different
irreducible component. Therefore limρ→1 µ�,ρ(M) = 0 at fixed lattice size
while limL→∞ µ�,ρ(M) = 1 at fixed density. Thus the simultaneous L → ∞
and ρ → 1 limit depends on the relationship between L and ρ as the limit is
taken: this is typical of finite-size behavior near phase transitions. The crossover
length �2,1(ρ) is defined to separate the “large” and “small” system behaviors
so that by sending L→∞ and ρ →1 with L��2,1(ρ) or L��2,1(ρ), respec-
tively, one obtains µ�,ρ(M) → 1 or µ�,ρ(M) → 0, respectively. This defines
the limiting behavior of �(ρ) up to an overall constant factor. A more precise
definition is possible, for example, by the sequence of (L,ρ) pairs for which
µ�,ρ(M)= 1

2 . Above results on the probability of the frameable component
establish therefore an upper bound on the crossover length:

�2,1(ρ)��u
2,1(ρ)≈ exp

[
c

(1−ρ)

]
, (10)

with c defined in (7). The reason why �u is only an upper bound for the
cross over length is because while our framing argument guarantees that
for L>�u a single irreducible component (the frameable one) dominates,
it says nothing about the probability of the maximal irreducible compo-
nent, which could already be close to unity for much smaller sizes. Indeed,
if we have not got roughly the correct size-dependent conditions for fra-
meability, L×L squares could be almost ergodic even for (1 −ρ) log L�

7In infinite volume the desired result µ∞,ρ (F)=1 can be derived immediately from the above
established µ∞,ρ (F0) > 0 using ergodicity of Bernoulli measure. The more involved argu-
ment developed in Section 2.3 gives in addition the velocity of convergence to unity of the
frameable probability. It is therefore needed to find a lower bound on the crossover length.
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(1 − ρ) log �u. This possibility is ruled out in Section 3.1 by establish-
ing a lower bound �l that has similar density dependence to �u, ensuring
that we do indeed have the correct asymptotic form, albeit with the wrong
coefficient c. The exact coefficient will be calculated in Section 3.2 thanks
to the definition of a different framing procedure.

The cross-over length, �, is also the scale above which frozen sets of
particles are unlikely to exist. In particular, a spanning network of fully
occupied two-wide slabs that all start and end either at system boundaries
or at T-junctions with other slabs – a frozen configuration–is likely to exist
for squares of size L < �, but unlikely to exist for much larger squares.
How does this occur? In particular, if a number of squares of size some-
what smaller than � are put together to make one of size a few times �,
what happens to the (formerly) frozen bars that terminated inside one of
the original squares? A crucial feature is the fragility of a typical frozen
network of slabs: if one slab is cut, as will occur if it ends on an edge of
one of the now-interior smaller squares, this can trigger a catastrophic fail-
ure of most of the network. Such extreme fragility is why the set of all
frozen configurations has measure zero in infinite systems in spite of its
non-zero entropy density.

Before moving on to more complicated KA models, it is important to
note that the whole proof of irreducibility is based on two ingredients: all
configurations that contain a special frame of holes belong to the same
irreducible component; and the frame can be created by starting from a
small nucleus of vacancies and expanding to larger sizes by satisfying at
each step requirements that becomes less and less severe probabilistically.
Therefore, the basic result for the simple square lattice model we have con-
sidered thus far is not strongly dependent on the exact set of dynamical
constraints: in the next subsections we show how it can be adapted to all
KA models on hypercubic lattices.

2.1.4. Exponential Convergence of Frameability of Large Systems

We now show that the probability a configuration of a hypercube is
frameable approaches one (at least) exponentially fast in its linear size L, i.e.

µ�,ρ(F)�1−C exp
(

− L

�u

)
(11)

for L��u(ρ).
In addition to its direct relevance for the square lattice model, this

result will be needed for analyzing other KA models. It is instructive to
consider two ways of proving the exponential convergence.
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(i) The first is via a percolation-like argument, in the same spirit as
that used in ref. 43. Consider initially a square lattice � of linear size L,
divide it into a set of smaller squares of linear sizes l and focus on one of
them, �	. If the four neighboring squares of �l are framed, then the 3l ×3l

square that includes all these small squares can also be framed (see Fig. 5);
other combinations of the nine subsquares also suffice to make the larger
square frameable.

In this way one can grow large frameable squares. The crucial obser-
vation is that if the (possibly) unframeable subsquares do not span across
the larger square, then the latter can definitely be framed. This condition
is simply the lack of percolation of unframeable squares. Thus

1−µ�L,ρ(F)�Pperc(L/l,µ�l,ρ(F),2), (12)

where Pperc(l, r,2) the probability of conventional site percolation for a
square lattice of linear size l, with occupation probability 1 − r. From
site-percolation estimates(43)

Pperc(l, r, d)�
∞∑

j=l

4(1− r)j 4j−1 = 4
3

(3(1− r))l−1

1−3(1− r)
. (13)

Therefore, if for the sub-squares

µ�l,ρ(F)>1− 1
3e

(14)

Fig. 5. Construction of a large framed square from a partial set of framed subsquares: the
two configurations can be connected by a sequence of moves similar to those of Fig. 2: start-
ing from the corners that connect two empty edges one can move lines of vacancies up,
down, right and left to reach the final configuration.
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Eq. (12) and (13) imply that for the large square

µ�,ρ(F)�1−Ce−L/l (15)

with a positive constant C. Since (14) holds for l =� – by the definition
of the crossover length – the desired exponential bound, (11), is proven.

(ii) The second method is via a renormalization group (RG) approach
(see ref. 44 for a similar argument in the context of bootstrap percola-
tion). Consider a square lattice �L of linear size L and divide it into four
squares of linear size L/2. If at least three of the four subsquares are
frameable, then the large square is also frameable. This implies an itera-
tive inequality:

µ�2L,ρ(F)�
(
µ�L,ρ(F)

)4 +4
(
µ�L,ρ(F)

)3
(1−µ�L,ρ(F)) (16)

If

1−µ�L,ρ(F)� 1
10e

(17)

then on the next scale up

µ�2L,ρ(F)�1−10(1−µ�L,ρ(F))2 (18)

which implies that condition (17) holds also for 2L. We can thus iterate
the inequality (18) to obtain

µ�2nL,ρ(F)�1−1/10
(
10(1−µ�L,ρ(F))

)2n

�1− 1
10

e−2n

(19)

Since for L>�(ρ) condition (17) holds, Eq. (19) gives the desired bound
(15) for large square lattices.8

2.2. Irreducibility for d = 3, s = 2

We now turn to the double-vacancy-assisted cubic lattice case, d = 3,
s =2, that was originally studied by KA, and prove that configurations are
almost surely in the same large irreducible component in the infinite sys-
tem limit for any density. This case can be analyzed by the general dis-
cussion of Section (2.4) however the study of this more highly constrained

8Note that we have only considered L=2n�2,1(ρ) for integer n, but the results can be readily
extended to all L.
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three-dimensional case is useful as it introduces, in a readily visualized sit-
uation, the technique we use to extend ergodicity results from smaller to
larger values of d and s.

Consider a cubic lattice � ∈ Z
3 with size L3. Define framed configu-

rations as those with all the boundary sites empty and define frameable
as those that, by an allowed sequence of elementary moves, can reach a
framed configuration. Again, frameable configurations with the same num-
ber of particles belong to the same irreducible component. This can be
checked by noticing that the bottom and top planes of vacancies can be
raised and lowered performing the same “sandwich procedure” as for the
d =2, s =1 case, but here using empty planes instead of empty rows.

A lower bound on the probability that a configuration is frameable,
µ�,ρ(F), can be obtained by the following expansion argument. Consider
a cube of linear size four, which has at its center an empty cube of lin-
ear size two. If adjacent to each face of the internal cube there is a 4×4
square that is frameable in the d = 2, s = 1, – single-vacancy-assisted pla-
nar — sense, the whole cube of size four is frameable in the desired three-
dimensional double-vacancy-assisted sense. This procedure can be iterated
to grow an L×L×L frameable configuration from an empty cube of size
two, by requiring that in each subsequent shell all six of the square faces
are frameable.9

Letting µ�,ρ(F0) be the probability of frameable configurations
grown from a nucleus at the origin, a series of lower bounds for µ�,ρ(F)

follows beginning from a completely empty X3 nucleus for general X

µ�,ρ(F)�µ�,ρ(F0)� (1−ρ)X
3

L/2−1∏

l=X/2

(
µ

2,1
�2l ,ρ

(F)
)6 ∀X (20)

with �2L is a 2L×2L square corresponding to one of the expansion faces.
From the previous subsection we know that the frameable probability of
a square, µ

2,1
�,ρ(F), is exponentially close to unity for L��2,1(ρ). As in

the case of bootstrap percolation(45) choosing X>>�2,1(ρ) in (20) makes
the pre-factor dominate over the product and we conclude that

µ∞,ρ(F0)∼ (1−ρ)�2,1(ρ)3
(21)

9Actually we should require a little more than that all the square faces be frameable: one
needs two frameable square of size L×L, two of size L×L+2 and two of size L+2×L+
2. We skip these details whose effects are subdominant compared to those we compute.
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for L��2,1(ρ); this yields

ξ3,2(ρ)∼�2,1(ρ) (22)

as the characteristic length scale above which the frameability conditions
are met with high probability.

By considering the O
(
L3/ξ3

)
possible initial nuclei in a large L3

cube, we can show, by analogy with the two-dimensional case, that
limL→∞ µ�,ρ(F)=1 thereby establishing an upper bound for the crossover
length �3,2(ρ) above which the large irreducible component dominates:

�u
3,2(ρ)≡ ξ3,2(ρ)(1−ρ)

−�u
2,1(ρ)3/3

. (23)

Up to subdominant corrections, this means

log �u
3,2(ρ)∼ [�u

2,1(ρ)]3. (24)

2.3. Irreducibility for all d , s =1

We now extend the results derived in the previous two subsections.
First we consider s =1 on general hypercubic lattices.

As above, define framed configurations to be those with all their one-
dimensional hyperedges empty and define as frameable those reachable from
framed configurations. In the three-dimensional cubic case, for example, the
relevant edges are the 12 edges of a cube. As in the cases already discussed,
all framed configurations – and therefore also the corresponding frameable
ones – belong to the same irreducible component. This can be seen, for
example, in the cubic case, by considering permuting the occupation vari-
ables of two neighboring sites {i, j} which lie in a plane parallel to the “bot-
tom” plane. By starting from the corners, the bottom frame can be raised
till it frames the plane that contains the pair {i, j}. Then, after applying
on this plane the same sandwich technique used for single-vacancy assisted
motion on a square lattice, the desired permutation can be performed and
the frame then reexpanded and returned to the bottom plane.

The growing technique that enables the construction of larger frame-
able configurations starting from an empty nucleus, can be generalized via
the following observation. Given a frameable hypercube of linear size L,
to expand it to size L + 2, 2d−1 vacancies are needed in the subsequent
shell for each of the 2d hyperfaces. Therefore, the probability that a config-
uration is frameable, µ

(d)
�,ρ(F), can be bounded from below by µ

(d)
�,ρ(F0),
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with

µ
(d)
�,ρ(F0)= (1−ρ)2d

∞∏

l=2



1−
2d−1−1∑

j=0

ld−1!
(ld−1 − j)!j !

ρld−1−j (1−ρ)j




2d

,

(25)

where the product is over even l. In the limit ρ →1, L→∞

µ
(d)
�,ρ(F0)∼ exp

(
− c(d)

(1−ρ)
1

d−1

)
, (26)

where

c(d)=−2d−1(d −1)

∫ 1

0

dy

y(log y)
d−2
d−1

log



1−y




2d−1−1∑

j=0

(− log y)j

j !







 .

(27)

As for the square case, there exists a length

ξ(ρ, d,1)≈ (− log(1−ρ)/(1−ρ))1/(d−1) (28)

such that µ
(d)
�,ρ(F0) varies little with L for L�ξ . Therefore, by considering

the O
(
Ld/ξd

)
possible distinct positions for the nucleus, an upper bound

for the cross-over length follows

�u
d,1(ρ)∼ exp

(
c(d)

d(1−ρ)
1

d−1

)
. (29)

As explained at the end of Section 2.1, requiring that the number of pos-
sible positions for framing nuclei times the probability that the configura-
tion is frameable about a given nucleus is of order one, is not enough to
conclude that µ�,ρ(F) = 1. Again, the conditions that a configuration is
frameable about two different nuclei, are not independent events. However,
provided the nuclei are sufficiently far apart, these events are almost inde-
pendent since the frameability requirements become weaker and weaker
for larger sizes. Indeed the requirement to have at least 2d − 1 vacancies
on each of the 2d faces of a frameable hypercube only amounts to 2d −1
vacancies among Ld−1 sites and thus, at fixed density, this becomes less
and less restrictive at larger sizes.
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We outline an iterative argument by which the desired previous result
can be proved (see Ref. 44 for a similar argument for bootstrap percola-
tion). Divide the lattice into (L/l2)

d hypercubes of linear size l2. At the
center of each of these hypercubes consider a smaller hypercube �1 of
size l1 = l2/2. The probability that the lattice is frameable can be bounded
using the probability that the lattice can be made frameable starting from
one of the (L/l2)

d hypercubes of linear size l1. We thus have a bound
µ�,ρ(F) � P1P2P3, in terms of the probabilities of three events: P1, the
probability that at least one of the hypercubes of size l1 is frameable; P2,
the probability that this frameable hypercube can be expanded until the
size l2 (requiring 2d−1 vacancies for each shell from size l1 to size l2);
and P3, the probability that the frameable hypercube of size l2 can be
expanded until the size L requiring 2d−1 vacancies on each shell from size
l2 to L excluding the regions of space occupied by the other small hyper-
cubes of size l1. The following results can be readily derived:

P1 = 1− (1−µ�1,ρ(F0))

Ld

ld2 �1− exp

(
−µ�1,ρ(F0)

Ld

ld2

)
,

P2 =
l2∏

l=l1



1−
2d−1−1∑

i=0

(
ld−1

i

)
ρld−1−i (1−ρ)i




2d

,

P3 =
L∏

l=l2



1−
2d−1−1∑

i=0

(
(l/2)d−1

i

)
ρ(l/2)d−1−i (1−ρ)i




2d

. (30)

By choosing l1 ≈ ξ(ρ,1, d), these give

P1 ≈ 1− exp

(
− exp

(
− c(d)

(1−ρ)
1

d−1

)
Ld

ld2

)
,

P2 ≈ 1,

P3 ≈ 1 (31)

so that µ�,ρ(F) is of order unity as long as exp(−c(d)/(1−ρ)1/(d−1))

(L/l2)
d �1, i.e. for L��u

d,1(ρ) with �u
d,1(ρ) given by Eq. (29).

2.4. Irreducibility for all d with s < d

We now consider KA models with general parameter 0 < s < d on
a hypercubic lattices of dimension d. These are the non-trivial cases. (As
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mentioned earlier, or s �d, any completely occupied d-dimensional hyper-
cubes are frozen so that these KA models on hypercubic lattices are non-
ergodic for any density ρ >0. At the opposite extreme, s =0 is the normal
lattice gas which is trivially ergodic.)

The s = 1 case was considered in the previous subsection. We now
show how the general case can be analyzed, and irreducibility proved, via
a generalization of the iterative procedure used in Section 2.2 to extend
the d =2, s =1 results to d =3, s =2.

Define framed configurations of d-dimensional hypercubes as those
with all hyperedges of dimension s empty. (More formally the configura-
tions with no particles on the hyperplanes:

{xE1 =1,L}×{xE2 =1,L}× · · · {xEd−s
=1,L} (32)

where E1, . . .Ed−s for all sets of d − s of the indices 1, . . . , d.) Inside a
frameable hypercube, any move of a particle to a neighboring empty site
can be achieved by the generalization of the sandwich technique discussed
previously.

Consider a frameable hypercube of size l. If adjacent to each hyper-
face there is a d −1-dimensional hypercube that is frameable in the d −
1, s − 1 sense, then the enclosing d-dimensional hypercube of size l + 2
is frameable. Therefore, to bound from below the frameable probability,
µ�,ρ(F (d,s)), we need to estimate the probability that a hypercube of lin-
ear size X centered at the origin is empty and that expanding from it any
subsequent shell is frameable in the d −1, s −1 sense. This yields

µ�d,ρ(F0
(d,s))� (1−ρ)X

d
L∏

	=X+1

µ�	,ρ(F(d−1,s−1)), (33)

where �d−1
	 is a d − 1-dimensional lattice of linear size 	. The argument

given is Section 2.1.4 for d = 2, s = 1 can be extended to the get that the
convergence of the frameable probability to one is exponential in the lin-
ear size of the system and determined by �u

d−1,s−1(ρ)10

µ�,ρ(F(d−1,s−1))�1−C exp
[
L/�u

d−1,s−1

]
for L��u

s−1,d−1(ρ).

(34)

10Note that the argument for exponential convergence requires the a priori knowledge of
convergence to unity for the probability of the frameble component. This has been proven
for any d, s =1 in previous section. Therefore (34) holds for any d, s =2 and the argument
below leads to µ∞,ρ = 1 for these cases. Therefore, one can apply again arguments in Sec-
tion 2.1.4 and obtain exponential convergence for all the cases s =2, i.e. (34) for s =3. And
so on iteratively.
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Hence, by choosing X ��u
s−1,d−1(ρ), the product on 	 in (33) is close to

unity. From generalization of the arguments given for the s =1 square lat-
tice case, a non-zero probability of frameability around a given nucleus
that converges rapidly to its asymptotic limit for large sizes implies a
probability close to unity for frameability of sufficiently large hypercubes
around some nucleus. More precisely that µ�,ρ(F(d,s)) approaches unity in
the thermodynamic limit and is close to one for L � �u

d,s(ρ). Since the
dominant small factor in (33) is the large power of 1 − ρ, and to make
frameability likely one needs a system large enough to contain at least one
frameable hypercube of size greater than �u

d−1,s−1, an upper bound on the
crossover length is

�u
d,s(ρ)∼

[
(1−ρ)−�u(ρ,d−1,s−1)d

] 1
d
. (35)

From the earlier results for s = 1 in general d � 2, we know �u
d1(ρ): Eq.

(29). Therefore, by induction, Eq. (35) yield upper bounds for the cross-
over length for general s, d with 1<s <d −1. The density dependence of
this upper bound, �u, is hence

�u(ρ, s, d)= exp◦s C(d, s)

(1−ρ)1/(d−s)
, (36)

where exp◦s denotes the exponential function iterated s times. Note that
the factors of ln(1 − ρ) that appear in 35 can be taken into account, as
far as the upper bound, by a slight modification of C(d, s).

2.5. Ergodicity for all d with s < d

Thus far, we have only considered the irreducibility of configurations
in infinite systems. In this section we prove that the almost-sure existence
of an irreducible component in the thermodynamic limit implies ergodicity
(i.e., the third step of the procedure outlined in Section 2.1). We follow the
same strategy as in section 4 of ref. 46. Since the proof is the same for any
of the models, we temporarily drop the indices d and s. It is first necessary
to introduce some mathematical notation and give a rigorous definition of
ergodicity for infinite systems.

Define �� ≡ {0,1}|�| as the configuration space of the hypercubic
lattice � ∈ Z

d and configurations η as the elements of �, namely sets of
occupation numbers ηx ∈ {0,1} for x ∈�. The dynamics of KA models is
a continuous time Markov process with generator L acting on local func-
tions f :�� →R as
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Lf (η)=
∑

{x,y}⊂�
|x,y|=1

ηx(1−ηy)cxy(η)
[
f (ηxy)−f (η)

]
(37)

with the sum running over nearest neighbor pairs, x, y. The quantity in
square brackets,

∇xyf ≡f (ηxy)−f (η), (38)

acts to change the occupation of sites x and y so that the occupation
number of the zth site in configuration ηxy is related to the occupations
in the configuration η by

η
x,y
z :=






ηy if z=x

ηx if z=y

ηz if z �=x, y ;
(39)

The jump rates cx,y(η) encode the constraints imposed by the KA rules,
namely

cxy(η) :=
{

1 if n
ȳ
x(η)�m and nx̄

y(η)�m,

0 otherwise
(40)

where

n
ȳ
x(η) :=

∑

z∈�, z �=y
|x−z|=1

ηz, (41)

i.e. n
ȳ
x(η) is the number of occupied neighbors of x, excluding y.
The dynamics preserves the number of particles, (i.e. the subspaces with

fixed number, N , of particles ��,N := {η ∈ ��

∑
x∈� ηx = N} are invari-

ant and the uniform measure ν�,N on fixed N subspaces is invariant).
However, due to the vanishing of certain rates for m < 2d − 1 (s � 1), the
configuration space, ��,N , of finite lattices breaks into disconnected compo-
nents: the Markov chain is hence reducible so that the process is not ergodic
on these subspaces. On the other hand, for the infinite lattice �= Z

d , the
process satisfies detailed balance with respect to the trivial Bernoulli prod-
uct measure, µρ , at any density ρ. Moreover, from the previous section,
we know that there exists an irreducible component – the set of frameable
configurations – that covers the configuration space. However this is not
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enough to conclude that the system is ergodic. Indeed, while for finite state
systems irreducibility of the Markov chain implies that there exists a unique
invariant measure and the system is ergodic with respect to it, this is not a
priori true in infinite systems. For example, Ising models below their criti-
cal temperature are irreducible but not ergodic in zero field because of the
coexistence of the two phases each of which lasts for infinite time. To estab-
lish ergodicity for infinite systems, one needs to prove(30) that the long-time
limit of all correlation functions – weighted averages over the probability
distribution at time t , Pt =Pt ∼ expLt – approaches those of the Bernoulli
product measure for almost all initial conditions, ηI : more precisely that

lim
t→∞

∫
dµρ(ηI )

[Pt f (ηI )−µρ(f )
]2 =0 ∀f ∈L2(µρ) ,

where f ∈ L2(µρ) if
∫

dµρ(η)f 2(η) < ∞ and µρ(f ) is the equilibrium
average of function f , namely

µρ(f )≡
∫

dµρ(η)f (η) , (42)

and Pt f (ηI ) is the correlation function f (η) averaged over all possible
histories up to time t starting with initial configuration ηI .

By the spectral theorem, convergence to the equilibrium measure
occurs if and only if zero is a simple eigenvalue of the generator of the
dynamics, L, i.e. if the only functions, f0, in L2(µρ) for which Lf0(η)=0
are constant on almost all configurations, i.e. on all except possibly a set
of measure zero.(30) Note that if the system can be trapped for an infinite
time in some region of the configuration space, this would not be true:
the characteristic function of this region would be a non-constant eigen-
vector of L with zero eigenvalue. This corresponds to the natural idea that
ergodicity breaking is related to the existence of regions of the configura-
tion space that are effectively disconnected. In the Ising model case, the
function f (η) that is equal to unity on configuration η if a majority of
the sites have up spins, and equal to zero otherwise, is such an example.
The strategy of the proof of ergodicity of KA models on infinite hyp-
ercubic lattices Z

d with parameter s such that s < d is the following. (1)
First we prove that, if f0 is eigenvector of L with zero eigenvalue, f0(η)=
f0(η

x,y) almost surely with respect to µρ for any pair of sites {x, y}, i.e.
µρ([f xy

0 − f0]2) = 0 where f
xy

0 (η) ≡ f0(η
x,y). This part of the proof uses

as a key ingredient the existence of an irreducible component which has
unit probability in the thermodynamic limit. (2) Then we use the fact that
symmetric measures can be decomposed on product measures (De Finetti’s
theorem(47,48)) to conclude that any such f0 is in fact constant.
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Let us prove (1). By enumerating frameable configurations, η1, η2, . . .

ηn, . . . , we can rewrite the event that a configuration is frameable as F :=⋃
n�1 ηn and define the function 1lF to be one if η∈F and zero otherwise.

The result µρ(F)=1 established in previous sections implies

µρ([∇xyf ]2)=µρ([∇xyf ]21lF )�
∑

n=1

µρ([∇xyf ]21lηn) ∀f ∈L2(µρ), (43)

where the exchange operator ∇xy was defined in (38). From the prop-
erties of frameable configurations, for any configuration η ∈ F one can
always find a path η, η1, . . . , ηM with ηM = µxy that connects η to ηxy

through allowed moves, i.e. with ηi+1 = ηi;zw for some pair of neighbor-
ing sites {z,w} and czw(ηi) = 1. By telescoping sums and the Cauchy–
Schwartz inequality,11 each term in the sum (43) can now be bounded
from above by a sum of elementary exchanges allowed by KA rules,
i.e. terms µρ(czw[∇zwf ]2). Note that we can introduce the jump rate in
the upper bound only since, as written above, we can choose elementary
moves with rate equal to one (never to zero). This is thanks to the fact
that the frameable component has unit probability, thus we could restrict
the mean in (43) as a mean over the frameable component, where we
know that a path of allowed moves exists for sure. The hypothesis of sen-
tence (1), namely that there is some f0 that is an eigenvector of L with
zero eigenvalue, implies that µρ(f0Lf0) is zero. Moreover, the symmetry
cxy(η)= cyx(η) – the microscopic reversibility – implies

µρ(f0Lf0)=−1
2

∑

{x,y}∈Zd

µρ

(
cxy(η) [∇xyf0]2

)
. (44)

Since the right hand side of (43) can be rewritten as a sum of such terms, the fact
that µρ(f0Lf0)=0 implies µρ([∇x,yf0]2)=0 and completes the proof of (1).

We now turn to the proof of (2). Consider the measure µ̃f0 defined
as µ̃f0(η) ≡ f 2

0 (η)µρ(η)/µρ(f 2
0 ). Since µρ is symmetric under exchanges

11Note that for any frameable configuration the existence of a path that joins η and ηx,y is
guaranteed. However, its length can be arbitrarily large on some rare configurations. There-
fore, strictly speaking, one cannot directly apply Cauchy–Schwartz inequality which would
pull out a non-bounded factor proportional to the length of the maximal path. However,
by dividing frameable configuration on sets characterized by the length 	 of the minimal
path (to perform such move), it is possible to bound each term in the r.h.s. of (43) as
an infinite sum (on 	) of terms of the kind 	 multiplied by terms µρ(czw [∇zwf ]2). This,
together with the observation (see below) that each of this terms must be equal to zero, is
sufficient to conclude that the l.h.s. in (43) is equal to zero.
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of particles and vacancies, i.e. µρ(η) = µρ(ηx,y), and f0(η
xy) = f0(η) on

almost all the configuration space, µ̃f0 is also symmetric, i.e. µ̃f0(η) =
µ̃f0(ηx,y) for any η and any pair {x, y}. Thanks to De Finetti theo-
rem(47,48) a symmetric measure can be always decomposed on product
measures corresponding to different densities. However, measures corre-
sponding to different densities are concentrated on different sets of con-
figurations. Hence, all the coefficients of the decomposition of µ̃f0 on
product measures have to be zero except the one corresponding to µρ .
Therefore f 2

0 (η)/µρ(f 2
0 ) = 1, which implies that f0(η) is constant12 and

equal to the coefficient of the decomposition corresponding to µρ .13

3. QUANTITATIVE RESULTS

In previous sections we have proven that for any parameters d and
s, with s <d, ergodicity holds in the thermodynamic limit. Moreover,
we have determined an upper bound �u

d,s(ρ) for the density dependent
cross over length, �d,s(ρ), that separates two different regimes on finite
volume hypercubes �∈Z

d of linear size L: if L→∞ and ρ →1 with
L��s,d(ρ), than µ�,ρ(M)→1; if L→∞ and ρ →1 with L��s,d(ρ),
than µ�,ρ(M)→0, where M is the maximal irreducible component (i.e. set
of configurations on � connectable by possible path which has larger
probability w.r.t. Bernoulli measure at density ρ, µ�,ρ). In other words,
for L��s,d(ρ) the configuration space is dominated by a single ergodic
component, while for L��s,d(ρ) different components contribute.

In the next subsection we find a lower bound �l
d,s(ρ), which has the

same form of density dependence as the upper bound. In the Sections 3.2,
3.3 we show that for specific cases, the exact asymptotic behavior of the
crossover length can be obtained – including the numerical coefficients.

3.1. Bootstrap Percolation and Lower Bounds on Crossover

Length

In this subsection we explain how one can obtain a lower bound on
the crossover length, �, thanks to a relation among KA models and the
well studied problem of bootstrap percolation.

12Since this procedure can be repeated for any linear combination of f0(η) with the constant
function, we obtain that the square of any linear combination of f0(η) with the constant
function is a constant which implies that f0(η) is indeed itself constant.

13Note that for Ising models at low temperature in zero field we cannot invoke such a unique
decomposition (the hypothesis for De Finetti’s theorem do not hold since the equilibrium mea-
sure is not simply a product) and therefore µρ([f x,y

0 −f0]2) does not imply that f0 is constant.
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Consider a random configuration at density ρ on a d-dimensional
hypercubic lattice �. One can isolate frozen subsets (possibly empty)
of such a configuration by the following deterministic procedure. First
remove all the particles that have no more than m neighbors, then iterate
this procedure until no more particles can be removed. Indeed, as already
noticed by KA for the d =3 s =2 case, all the particles (if any) that remain
at the end of such procedure are frozen: namely they can never move
under KA dynamics starting from the original configuration.14 This pro-
cedure is simply related to conventional bootstrap percolation (refs. 49–50)
which corresponds to starting from a configuration at density ρ, iteratively
adding particles in empty sites that have fewer than m neighbors, and con-
sidering any clusters of empty sites that may remain at the end of this pro-
cess. In other words, by exchanging particles and vacancies, and hence ρ

with 1 − ρ, one recovers the usual bootstrap procedure. Let µB
�,ρ be the

probability that, starting from a random configuration on an hypercube
� ∈ Z

d of linear size L, a cluster of particles remains at the end of the
modified bootstrap procedure we are interested in. The rigorous results in
ref. 43 for usual bootstrap percolation yield the existence of a crossover
length �B(ρ, d, s)≡exp◦s(K(d, s)/(1−ρ)d−s) such that if one sends simul-
taneously ρ →1 and L→∞ with L growing faster (slower) than �B , µB

�,ρ

goes to one (zero). Furthermore, the convergence to unity in the regime
for L>�B(ρ, d, s) is exponentially fast.

To our knowledge only upper and lower bounds on the constant
K(d, s) are available in the general case, while the exact value has been
recently determined(52) for the case corresponding to our d =2, s =1. For
the non-trivial models, s <d, if clusters of particles remain, they must be
system-spanning clusters (i.e. clusters that connect two boundaries of the
system): in infinite systems, such frozen clusters must be infinite. Since on
any finite lattice two configurations with different frozen sets belong to
different irreducible components, the likely presence of such system-span-
ning clusters of frozen particles we have immediately that when ρ → 1
and L→∞ with L increasing slower than �B(ρ, d, s), the probability of
the maximal irreducible component for KA model (µ�,ρ(M) is strictly
smaller than one. This corresponds to the following lower bound for the
KA crossover length:

�d,s(ρ)��l
d,s(ρ)=�B(ρ, d, s) . (45)

14Note that the converse is not guaranteed: a priori there could exist sets of particles that are
thrown away during the deterministic procedure, but they are forever blocked under KA
dynamics.
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Note that the form of the density dependence of this lower bound (45) is
the same as that of the upper bound, (36).

As mentioned above, for the case d =2, s =1, recent results have been
found in ref. 52 with a sharp value of the constant: K(2,1)=π2/18. On
the other hand, from Eq. (10) we find C(2,1)=− ∫ 1

0 dy
log(1−y+y log y)

y
�4.4,

therefore K(2,1)<C(2,1) and �u
2,1(ρ)>�l

2,1(ρ). In the next subsection we
show how, from a different framing technique, it is possible to determine a
stronger upper bound for �2,1(ρ) which turns out to be equal to the lower
bound from bootstrap percolation.

3.2. Optimal Framing and Exact Crossover Length for d =2, s =1

We now show how exact results for the crossover length of the single-
vacancy assisted (s =1) KA model on a square lattice can be obtained by
an optimal framing construction.

Define a W ×H rectangle (with W +H even) to be optimally framed
if it has 1

2 (W + H) + 1 vacancies arranged with one in a corner and the
others on alternate sites of the two perpendicular sides that intersect at
that corner, plus any number of additional vacancies, see Fig. 6. Optimally
frameable configurations are those that can be reached from an optimally
framed configuration with allowed moves.

One can show that all optimally framed configurations of a rectan-
gle with the same particle number belong to the same irreducible com-
ponent. Hence all the optimally frameable configurations belong to the
same irreducible component. This follows by showing that within an opti-
mally frameable rectangle any nearest neighbor pair of particles can be
exchanged and all the other particles returned to their starting positions.
The sequence of moves to perform a generic such exchange can be con-
structed by considering the basic moves in Fig. 7, which allow one to

Fig. 6. A 7 × 7 optimally framed configuration.
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Fig. 7. Basic moves by which the three vacancy corner can move along the alternating-
vacancy row of an optimally frameable rectangle.

Fig. 8. Basic moves by which the row of alternating vacancies in an optimally frameable
rectangle can be lowered.

move the nucleus of three vacancies along the row containing alternating
vacancies, and those in Fig. 8 which enable one to lower and raise the row
of alternating vacancies through the lattice. It is straightforward to check

that with fewer than 1+ 1
2 (W +H) vacancies, large scale rearrangements of

the particles in a rectangle are not possible: this suggests that this framing
is, at least in some senses, optimal.

Following the same strategy as for the simple framing used previ-
ously, we now show how larger optimally frameable rectangles can be
constructed. Consider an optimally framed W × H rectangular region
embedded in a larger system. The following statements can be checked by
direct inspection: if there is a vacancy in a line next-nearest neighbor to
one of the rectangular edges parallel to either of the directions x or y, the
rectangle can be expanded to a W × (H + 2) or (W + 2)×H , respectively,
optimally framed rectangle; if there is a vacancy in the line segment next
to one of the rectangle’s edges it is likewise expandable into a W × (H +1)

or (W + 1) × H framed rectangle; and if there is a vacancy next nearest
neighbor along a diagonal from one of its corners, the rectangle is expand-
able to a (W +1)× (H +1) optimally framed rectangle.

Starting from a nucleus of three vacancies in a two-by-two square, the
described expansion procedure can be iterated to grow larger frameable
rectangles as long as the needed vacancies are present at each step. We
must now estimate the probability that all the needed vacancies to con-
struct an infinite frameable region centered on a chosen site are present.
Define Q	

k as the probability that, given a k − 2 × l optimally frameable
rectangle, it can be expanded to the right to an optimally frameable k × l

rectangle which now includes the (k − 1)th and kth columns. From the
above observations, we obtain the following recursion relations

Q	
k+2 =Q	

k+1(1− e−v	)+Q	
ke

−v	(1− e−v	) (46)

where we have approximated, in the high density limit of interest, ρ	 �
e−	(1−ρ) (and used the notation v=1−ρ). Defining the ratios of successive
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Qs by

R	
k ≡ Q	

k+1

Q	
k

(47)

we obtain

R	
k+1 = (1− e−v	)+ e−v	(1− e−v	)

R	
k

. (48)

Since the least unlikely way for the rectangle to expand is roughly isotrop-
ically – as can be shown – we expect k≈ l at large scales . Moreover, for k

and l large the ratios of probabilities for successive expansions along the
same axis will vary slowly, therefore a natural – and checkable – ansatz is

R	
k+1 ≈R	

k ≈R(	). (49)

By substituting (49) in (48), we find

R(	)� 1−E
2

+ 1
2

√
1+2E −3E2. (50)

where

E = e−v	. (51)

As the rectangle has to be expanded to infinity in all four directions con-
currently, this yields an estimate for the probability µ∞,ρ(O) that a spe-
cific nucleus of three vacancies can be expanded to an infinite optimally
frameable rectangle

µ∞,ρ(O)∼
[ ∞∏

n=1

R(2n)

]4

∼ exp

[
2

∞∑

	=1

ln R(	)

]
(52)

which, by replacing the sum over 	 by an integral and changing variables,
yields

µ∞,ρ(O)� exp− 2c∞
1−ρ

(53)

with the constant given by

c∞ =−
∫ 1

0

dE
E ln

[
1−E

2
+ 1

2

√
1+2E −3E2

]
= π2

18
∼=0.55 . (54)



Cooperative Behavior 203

The knowledge of µ∞,ρ(O) gives, as in previous sections, an upper bound
for the crossover length

�2,1(ρ)� exp
c∞

(1−ρ)
. (55)

Since the constant c∞ (54) has exactly the same value as the bootstrap
constant K(1,2) in ref. 52, the upper bound for � obtained by the above
framing procedure coincides with the lower bound provided by bootstrap
results, thus giving the exact asymptotic high density behavior of the
crossover length, up to subdominant pre-factors. This proves that the opti-
mal framing procedure captures the dominant mechanism that restores
ergodicity in large systems at high densities; this justifies referring to it as
optimal framing.

3.3. Optimal Framing for d =3, s =2

We have shown that the framing procedure devised in Section 2.1 for
the two-dimensional case is not optimal: indeed it does not capture the
dominant ergodicity restoring mechanisms and therefore gives a non-opti-
mal bound for the crossover length, �. (see also Section 4). However, we
were able to construct a different framing procedure which does capture
the dominant mechanism. This was done through the construction of a
lower-dimensional basic structure (lines of alternated particles and vacan-
cies) in which each particle is blocked but only barely so: an additional
lower-dimensional vacancy cluster (an extra vacancy in the square lattice
case) can be moved throughout the whole structure.

We now construct a framing that we conjecture is optimal for the
d =3, s =2 case. Consider a cube of linear size L which is completely filled
with the exception of a plane L × L on which the configuration is given
by the repetition of the unit cell of eight sites drawn in Fig. 9. It is possi-
ble to check that all the particles on such a plane can never move. How-
ever, if one adds two vacancies in place of e.g. the first particles on the
two rows of one of the cells, then all the particles on the plane can be
moved. Consider a cube which has three orthogonal faces with the above
defined basic planar structure. We conjecture that with an extra set of
O(L) vacancies associated with the linking edges and O(1) with the cor-
ner, the planar structures can be moved all across the cubic lattice and
allow any exchange inside, i.e. they play the same role as the completely
empty faces of frameable cubes defined in 2.2. If this is correct, by requir-
ing 9/8L2 +O(L) vacancies one can construct a configuration for a cube
of linear size L in which all exchanges are allowed. We conjecture this to
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Fig. 9. Rectangular unit cell for the basic planar structure for the d =3, s =2 case.

be the minimal requirement, i.e. the above defined framing procedure to
be the optimal one.

Note that the calculation of the probability for such a framing pro-
cedure to be expandable should yield an upper bound on the crossover
length which is better than, although of the same form as, the one we
obtained in (23), since fewer vacancies are required in successive layers.
However, a rigorous lower bound – and hence the putative exact value of
C(3,2) if the framing described here is indeed optimal – is not known; the
exact value of K(3,2) for the corresponding bootstrap percolation has not
been determined.15

4. PHYSICAL PICTURE OF THE COOPERATIVE KA DYNAMICS AT

HIGH DENSITY

In this section, for completeness, we summarize the physical picture
that we derived for the high density dynamics of the KA. This has already
been discussed in ref. (40) and the derivation of some results on the
dynamics will be presented in a forthcoming publication.(53) We focus for
simplicity on the s = 1, d = 2 case leaving discussion of the natural gen-
eralization to any of the s < d, KA models on hypercubic lattices to the
end.

As already noted, there are no finite clusters of vacancies that can
freely move in an otherwise completely filled lattice. However, in a frame-
able region of size l =ξ ∼ ln(1/(1−ρ))/(1−ρ), we know that: (1) all parti-
cle configurations inside the region can be reached from each other via an
allowed (although long) path of elementary moves; (2) a frameable region
can move of one step in a given direction if the surrounding configura-
tion contains the minimal number of vacancies required to expand the
region in the same direction in the framing procedure (see Section 3.2).
Indeed, by using again the basic moves in Figs. 6 and 7, it is possible to
construct a path that shifts the region of one step (the paths goes first

15Note that knowledge of C(3,2) from framing arguments would give a new upper bound on
the value of K(3,2) for the Bootstrap problem and perhaps a hint of its exact value (recall
that K(2,1) coincides with the constant coming from the correspondent KA problem cal-
culated with the optimal framing).
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through the expansion of the region, then the vacancies are left behind
on the opposite side and the region moves); (3) a frameable region of size
	= ξ ∼ ln(1/(1 − ρ))/(1 − ρ) is likely to find at least one vacancy in each
of 	 consecutive line segments along each of the lattice directions. Thus
frameable regions of size ξ can expand and, hence move, ξ steps, a dis-
tance similar to their diameter. For this reason, we refer to them as mobile
cores,(40) although it may be a bit misleading, they have been called defects
in other contexts.

The motion of frameable cores is, on long scales, like simple diffusion
in a random medium. The size of mobile cores, 	= ξ ∼ ln(1/(1 −ρ))/(1 −
ρ), is such that the random environment seen by the cores is the minimal
one in which diffusion is possible. For smaller values of 	 the probabil-
ity to find the necessary vacancies in the neighborhood of a core is too
low to guarantee that it can diffuse. In contrast larger frameable regions
with 	>ξ could diffuse, but these would contribute less to the long-time
dynamics because they are both rarer and move more slowly than cores of
size ξ . (Indeed, larger frameable regions will tend to decompose into one
(or more) minimal mobile cores, and leftover vacancies that cannot move
without assistance of a mobile core.)

The diffusion coefficient of a tagged particle, DS , one of the key physi-
cal quantities analyzed in simulations and experiments, will be given by the
spatial density of the cores divided by the typical time scale for their motion,
assuming approximatively independent core diffusion. The density of cores
of size ξ ∼ ln(1/(1 −ρ))/(1 −ρ), is just the frameable probability around a
given origin, µ�,ρ(F)∼�−d . The form of the asymptotic behavior of � in
the high density limit was found for any s <d, and, for the d =2, s =1 case,
the coefficient that enters ln � was calculated exactly see Section 3.

The typical timescale on which cores move has been discussed in
ref. 40. Since all frameable configurations are equiprobable, this is propor-
tional to exp(�S), the ratio of the number of accessible (frameable) con-
figurations of the core to the number in the most severe bottleneck in
the configuration space of the core.(40,53) The worst case scenario for a
minimally frameable region of size 	 would occur if the bottleneck cor-
responded to a single configuration, (the framed one) leading to �S =
Stotal � ln 	! since the total number of frameable configuration is of order
	!. However, as explained in ref. 40 (and to be detailed in ref. 53) the bot-
tleneck is not nearly as tight: cores do not have to go through framed con-
figurations in order to rearrange or to move. Numerically we have found
that the time scale increases more slowly than exponentially in 	 and its
growth is compatible with an analytic argument for the entropy bottle-
neck, which yields at least a lower bound. This result is obtained by not-
ing that, in order to fully equilibrate, an optimally frameable square of size
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	 has to pass through configurations with the nucleus (the three vacancy
element, see Fig. 6 and Section 3.2) in a corner of the square. Using a
transfer matrix technique we obtain for 	× 	 optimally frameable squares
an entropy difference between configurations with the nucleus in the cen-
ter (which are typical) and those with the nucleus in the corner asymptot-
ically equal to �S ≈ ϒ

√
	 + α ln 	 + C with ϒ = 2

√
6+√

22 − 2
√

3 ∼= 3.075
and α computable in principle.(53) This leads, via the observation that the
worst blockages are typically when 	∼1/(1−ρ) to a typical timescale for
movement of optimally frameable regions

ln τD ∼1/
√

1−ρ (56)

for the s =1 square lattice model. We conclude that the dominant contri-
bution to self-diffusion of a tagged particle, DS , arises from the low den-
sity of mobile cores rather than the long time needed for them to move of
the order of their diameter.

The arguments given above can be generalized to any KA models on
hypercubic lattices with s <d. The conclusion is that, to leading order in
(1−ρ)−(d−s), the s-iterated logarithm of the self-diffusion coefficient scales
as the s-iterated logarithm of µ�,ρ(F). Correspondingly, we expect the
typical relaxation times τ to scale with one over the density of cores, i.e.
as the inverse of DS .16 In particular, thanks to the exact result in Section
3.2, for the d =2s =1 model we obtain

lim
ρ→1

(1−ρ) ln DS =−π2/9 (57)

a prediction which we have successfully verified by numerical simula-
tions.(40) On the other hand, for the case d = 3, s = 2, the dependence on
density for different relaxation times τ have been considered in refs. 14, 24
and our prediction have been successfully checked, namely data are well
fitted by the scaling τ ∝ exp expC/(1−ρ) with C constant.

Note however that there may be very substantial corrections to the
leading asymptotic behavior at obtainable densities. Indeed, it is known
that there are large corrections to the asymptotic law derived for boot-
strap percolation.(49) Therefore, it would be useful to compute sub-leading
corrections to all the analytical expressions derived here. First, one should

16Strictly speaking our results applies directly to DS . The structural relaxation time could,
and very probably will, affected by the slowest regions in the systems which instead are
not relevant for the self-diffusion. Hence, we expect a structural relaxation time larger than
1/DS , i.e. a decoupling between structural relaxation time and self-diffusion as indeed the
numerical results of KA already suggested originally.(11)
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take into account the timescale for movement of a core, discussed above.
For example in the d = 2, s = 1 case corrections to (1 − ρ) log DS from
this will be large – probably of order of

√
1−ρ. Furthermore, one should

take into account corrections to the asymptotic form of the optimal fram-
ing probability: we expect these to be negative as occurs for bootstrap
percolation where the numerical results for c∞(49) correspond to roughly
one half of the exact result.(52) (Note that recent progress on the calcu-
lation of such corrections for bootstrap percolation has been made.)(54)).
A rough cancellation between such a negative correction to the density of
the mobile cores, and the positive one arising from the typical timescale,
might explain why, in the measured range of densities, ln DS seems to be
closer to its asymptotic value than is the crossover scale �.

The mechanism that we have identified for the long-time scale dynam-
ics, certainly provides a lower bound on DS for ρ → 1; this could be
probably be proved along similar lines.(53) But how do we know that
there is not a faster mechanism which dominates? There are two reasons
to strongly believe that there are no faster mechanisms: First, we have
proven that the finite size cross-over between irreducible and non-irreduc-
ible dynamics takes place exactly when the probability of having at least
one core in the lattice crosses from small to large. This strongly suggests
that a single core is necessary, as well as sufficient, to relax the system.
This is exactly analogous to the behavior for a standard lattice gas in
which DS ∝ (1−ρ) at high density and the change from frozen to unfrozen
takes place when there is at least one vacancy in the region. Secondly, rig-
orous analysis of non-cooperative KA models(41) for which finite clusters
of q vacancies can move freely, (such as s = 1 on a triangular lattice, for
which q =2) show that the self-diffusion coefficient scales as DS ∝ (1−ρ)q

in the high density limit. The cooperative cases can be understood roughly
in terms of a density dependent q: at any fixed density there are no free
moving clusters but there is a characteristic sized group of vacancies – a
mobile core – that can indeed diffuse since it typically finds enough outer
vacancies in each direction (Of course the environment is random and
there are some places in which a core cannot enter without changing its
size. However these regions would not be important for the self-diffusion
coefficient even if they were forever frozen, as happens for diffusion in a
disconnected random environment when there is a percolating cluster.). At
each density, one needs to have q ∝ξ(ρ), in order to be sure that the diffu-
sion of cores is possible: this yields a mobile core density of the form we
have found.

Up to now we have focused on the behavior at high densities, in
particular the asymptotic value of relevant quantities in the limit ρ →1.
However, as discussed in more detail in refs. 41, 53 for some lattices,
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especially with s > 1, the asymptotic behavior will not be relevant except
on extremely – perhaps inaccessibly – long-time scales. In practice, much
of the slowing down as the density increases could occur before this
asymptotic regime. In particular, rapid crossover could occur near an
almost transition – sometimes called an avoided transition(55) – near an
almost-critical density ( which would depend on the lattice and the value
of s). Such behavior could account, for example, for the apparent power
law “vanishing” of the self-diffusion coefficient observed as ρ → ρ̄ �0.881
in simulations of the three-dimensional case with s =2.

A simple argument suggests that such a cross-over might exist.
We again first focus on the two-dimensional case with s = 1. As

already mentioned in ref. 41, in this case a small (fixed-size) cluster of
vacancies can freely diffuse on a second-neighbor-percolating clusters of
other vacancies. Therefore,when the vacancy density is above the corre-
spondent percolating threshold, diffusion can occur without substantial
cooperativity. But the contribution to the self-diffusion coefficient from
this mechanism shrinks to zero as the vacancy percolation threshold is
approached from above (from below, in terms of particle density). At
higher densities, the mechanism behind diffusion crossesover to the coop-
erative one discussed in this paper.

For the three-dimensional case with s = 2, from the construction in
Section 3.3, we expect that the approximate transition seen in numerics
may well be related to percolation of surfaces on which the vacancies are
nearly connected like those on the surfaces of optimally framed cubes.

The above percolation arguments are only qualitative and we do not
expect that the density at which the percolation transition takes place
will correspond very well with the density at which the apparent tran-
sition takes place. In next section we present a quantitative analysis of
an actual transition in KA models. We show that in finite dimensions,
apparent transitions with rapid crossovers could arise as “ghosts” of actual
dynamical transitions that occur on Bethe lattices – or, equivalently, within
the Bethe approximation for real lattices. This suggests a way to study
“avoided transitions”: by using the Bethe lattice results and perturbing
around this “mean-field” limit.

5. KA MODELS ON BETHE LATTICES

Bethe lattices are defined as a infinite loop-free graphs with fixed con-
nectivity z = k + 1. The main motivation for studying statistical mechani-
cal models on Bethe lattices is that such “lattices” are often considered to
be a good approximation of more realistic lattices, e.g. hypercubic, in the
limit of high dimensionality: the Bethe lattice models are then considered
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to be a type of “mean field” – or more accurately “uncorrelated field” –
approximation. But their tree – like structure enables analytic calculations
via recursive procedures.

As we will explain in detail, the behavior of KA models on Bethe lat-
tices is qualitatively different from that on hypercubic lattices obtained in
previous sections: on Bethe lattices an ergodic/non-ergodic transition takes
place at a non-trivial critical density. Nevertheless, exact results on these
lattices, when combined with those for hypercubic lattices, should be useful
both for better understanding of the latter, and as background for consid-
ering how mean-field-like scenarios for glass transitions might – or might
not – be extended to real glasses, or at least to some more realistic models.

5.1. Bethe Lattices

There are subtleties in the definition of Bethe lattices that are impor-
tant to note. Bethe lattices with connectivity k + 1 are locally identical to
the infinite size limit of random “c-regular” graphs with c=k+1(56) which
are uniformly drawn from the set of graphs with connectivity c for each
site with neither multiple edges (no two edges joining the same pair of
sites) nor loop-edges that join a site to itself. Since in the limit of large
number of sites, with high probability there are no finite loops that go
through a given set of vertices, a typical such random graph looks locally
(i.e. on any finite length scale) like a Cayley tree with a fixed branching
ratio. (Recall that a Cayley tree with connectivity k + 1 is constructed by
taking k + 1 rooted trees with branching ratio k and connecting all the
k + 1 roots to a new site, which can be considered as the origin.) Nev-
ertheless, for macroscopic properties the presence of loops that exist in
even very large random graphs is crucial since it induces geometric frus-
tration and ensures a statistically homogeneous structure which prevents
the pathologies that arise for Cayley trees for which a positive fraction
of sites are on the boundary which causes extreme sensitivity to bound-
ary conditions. A Bethe lattice corresponds to considering a Cayley tree of
size L, focusing on a core of size 	 around the origin and taking the limit
L→∞ before the limit 	→∞, or with the simultaneous limit with both
lengths becoming infinite but 	

L
→0. Note that this is equivalent for mod-

els with local dynamics to considering first the limit L to infinity with ran-
dom initial conditions, and then considering the long-time limit: as such,
it is quite physical.

The following analysis holds both for random c-regular graphs with
c=k +1 and for Bethe lattices, up to the subtleties discussed above.
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5.2. Existence of Frozen Phase

KA models on a Bethe lattice with connectivity k + 1 are defined as
in Section 1.3, with 0<m<k and s = k −m. As usual, it is convenient to
arrange the lattice as a tree with k branches going up from each site and
one going down. Before proceeding with a more careful analysis, we first
give an argument that on Bethe lattices, in contrast to hypercubic lattices,
infinite frozen clusters almost always exist at sufficiently high densities, ρ.

Rough analogs of the infinite networks of frozen fully-occupied slabs
that can occur on hypercubic lattices with s < d, are fully occupied infi-
nite subtrees with branching ratio m=k − s and hence coordination num-
ber m+1: none of the particles on such a fully occupied subtree can move.
If a Bethe lattice with coordination number four is arranged with the four
bonds coming out of each vertex forming a cross, then all the vertices of
a fully occupied three-sub tree (i.e. a subset of the original graph form-
ing a tree with branching ratio equal to three) will appear to have a line
going straight through them, and another half line that either terminates
at the vertex in a T-junction, or also continues through it. Such trees are
thus somewhat similar to a network of bars on a square lattice. In another
sense, however, because they have no loops, they are more similar to a sin-
gle two-wide infinitely long solid bar on a square lattice. Because, for m<

k, the number of potential m-sub trees is exponentially large – in contrast
to the number of infinitely long straight slabs on hypercubic lattices – it is
natural to expect that a fully occupied frozen subtree will almost always
exist at high densities. This can be shown by a simple generalization of the
analysis for conventional site percolation on Bethe lattices.(50,57)

Consider a site, call it i, and the probability, Q′, that it is both occu-
pied and is the root of a fully occupied m-subtree on the portion of the
Bethe lattice above it. As the existence of such a subtree requires the exis-
tence of similar subtrees rooted on at least m of the sites above site i, and
these are independent events, each with some probability Q, we can write
a simple recursion relation:

Q′ =ρ

k∑

j=k−s

Qj (1−Q)k−j
(

k
j

)
. (58)

This has the trivial fixed point solution Q= 0 for any density, but, above
a critical density, ρT , it has an additional non-trivial fixed point solution,
Q∗(ρ)>0. For the simplest interesting case, k =3, s =1 – loosely approx-
imating the coordination-four square lattice –, one can easily solve the
fixed point equation to find ρT = 8

9 , a discontinuous jump at ρ = ρT to
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a non-zero value: Q∗(ρT ) = 3
4 and above ρT a square-root cusp increase

in Q∗(ρ) which eventually saturates at Q∗(1)= 1. Other cases with m� 2
behave qualitatively similarly, in particular also exhibiting a discontinuous
onset of the fraction of sites in the frozen sub-tree – simply related to Q∗
– at a non-trivial critical point at ρ =ρT (k,m). For models with m=1, i.e.
s = k −1, the existence of an m-subtree is the same as the existence of an
infinite fully occupied cluster and the behavior of Q is thus identical to
that of conventional percolation: there is a critical point at ρT = 1

k
with

Q∗ rising linearly from zero as ρ increases further.
What is the significance of these results for KA models? As do other

percolation arguments, these provide useful bounds: the existence of an
infinite fully occupied m-tree on a k-Bethe lattice, i.e. Q∗ > 0, is a suffi-
cient condition for the existence of an infinite frozen cluster in the corre-
sponding k,m KA model. Thus we can immediately conclude that a frozen
phase is possible in these Bethe lattice models at least for ρ >ρT . We do
not, however, yet have a necessary condition for frozen clusters: as can be
seen, these can have isolated vacancies within them at least at sites with
more than m+1 frozen subtrees nearby.

5.3. Dynamical Transition

We now analyze the behavior with the actual KA constraints by a
generalization of the downwards iterative procedure used above.

Consider a particular site and define the following events:

(i) The site is occupied by a particle which can never move up as
long as the site below it is occupied; denote by Y the probability of this
event.

(ii) The site is frozen: occupied by a particle which can never move
up even if the site below it is empty; denote by F the probability of this
event, which is a subset of event (i).

(iii) The site is empty but blocked in such a way that particles on
lower sites can never move up to the site; denote by B the probability of
this event.

By using the tree-like structure and its symmetry under exchange of
branches, one can write iterative equations for the (primed) probabilities
for the sites in one layer, in terms of the (unprimed) probabilities for the
sites in the layer immediately above:
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Y ′ = ρ




k∑

j=k−s

Y j (1−Y )k−j
(

k
j

)
+

k∑

j=s+1

BjY k−j
(

k
j

)


 ,

B ′ = (1−ρ)

k∑

j=k−s+1

Fj (1−F)k−j
(

k
j

)
, (59)

F ′ = ρ




k∑

j=k−s+1

Y j (1−Y )k−j
(

k
j

)
+

k∑

j=s

BjY k−j
(

k
j

)


 .

These can be alternately written for Y in one layer as a function of the
three Y s in the three next higher layers.

We are particularly interested in stable fixed points of the iterative
equations which correspond to the desired behavior in the interior of the
system; the fixed point equations can be reduced to independent polyno-
mial equations, with ρ dependent coefficients, for any one of the Y , B, or
F . For ease of notation, except when it might be confusing, we will denote
fixed point probabilities simply by Y, F, B and Q.

We have earlier shown that there exists a frozen phase at high densi-
ties: in particular for ρ >ρT the probability Q is non-zero. Since when the
event corresponding to Q occurs, the particle is definitely frozen, we know
that F �Q; F non-zero then implies from (59) that both Y and B are also
non-zero at high densities.

To show that all the restricted events have zero probability at low
densities, it is sufficient to note that Y ′, F ′ and B ′ all depend at most lin-
early on Y, F , and B (as the other powers in the polynomials are greater
than unity), and two of the coefficients are ρ. Thus at sufficiently low den-
sities, Y must decrease on iteration by a factor that is no larger than a
multiple of ρ. Thus the only fixed point at low densities is Y =B =F =0.

We have thereby shown that a dynamical phase transition must exist
for Bethe lattice KA models with 0<s <k. We now show that, except for
s =k −1, this transition is discontinuous.

5.3.1. Discontinuity at Transition for s < k − 1

For KA models with s < k − 1, i.e. m � 2, one can show straightfor-
wardly that the transition is discontinuous. Focus on one site, call it x.
A particle on x can move up even if the site below it is occupied, if at
most one of the k sites above x and the k2 sites one level further up are
occupied. In such a situation, the marginal event whose probability is Y



Cooperative Behavior 213

does not occur. For the empty sites in the two levels above x, the marginal
occupied event does not occur either and the probability of such sites is
thus at least 1 − Y . With all probabilities having their fixed point values,
these observations imply that

Y �1− (1−Y )k+k2 − (k +k2)Y (1−Y )k+k2−1 . (60)

But this inequality cannot be obtained if Y is positive but small, since for
0<Y �1 it would become essentially 1� (k +k2 −1)(k +k2)Y , which can-
not hold for small Y . Therefore, the fixed point value of Y cannot go con-
tinuously to zero: it must jump to a non-zero value at the critical density,
ρc.

Note that this argument does not apply for the case s = k − 1. This
is because, even if all but one of the sites immediately above x are empty,
a particle on x can still not move up if the site below it is occupied (the
inequality (60) in this case does not have the second term on the right
hand side; this invalidates the rest of the argument).

5.3.2. Continuity of Transition for s = k −1

Now consider the most highly constrained non-trivial case: s = k − 1.
In contrast to the less constrained models, for a particle to be frozen in
this case, it need only belong to an infinite cluster of particles with two
or more neighbors, i.e. to a percolating cluster in the conventional sense of
nearest neighbor percolation. This means that for m= 1, the critical den-
sity for the KA model should be the same as for percolation, ρc =1/k,(57)

and the transition will be continuous with Y growing linearly just above
ρc. By solving Eq. (59) for the simplest such cases, k = 2 and k = 3, this
can be checked directly. More generally, for any k > 2 with s = k − 1, to
quadratic order when it is small, Y ′ depends only on Y and can be seen
to attain a fixed point value Y ≈ 2

k−1 (ρ − ρc) just above the transition at
ρc =1/k; this non-zero Y induces non-zero, but quadratically small, values
for both B and F .

5.3.3. Connection to Bootstrap Percolation

As for hypercubic lattices, bootstrap percolation yields bounds for
the behavior on Bethe lattices. Before analyzing in detail the character of
the dynamical transition, we illustrate this connection which can elucidate
the physical mechanism underlying the dynamical transition of KA models.

The relevant bootstrap percolation process is similar to that given ear-
lier for hypercubic lattices (and introduced by KA(11)): From a random
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initial configuration with density ρ, remove all the particles that can move
according to KA rules and iterate the process until no more particles
can be removed. If some particles survive at the end of this procedure,
they must be frozen in their initial configuration under the KA dynamics.
Define pB as the probability that at the end of the procedure an infinite
particle cluster remains. By the above observation, if pB >0 the KA model
at density ρ is not ergodic. Let ρB

c be the critical density, if any, at which
a bootstrap percolation transition takes place, namely pB =0 for ρ <ρB

c and
pB >0 for ρ >ρB

c . If there exists such a bootstrap transition, a dynamical
transition for the corresponding KA model must also occur and the corre-
sponding critical density satisfies ρc �ρB . Moreover, a reasonable Ansatz,
is that the two transitions and therefore the corresponding critical densi-
ties, in fact, coincide. In the rest of this section we present an argument
supporting this conjecture.

Let x be a site on which a particle is frozen with respect to KA
dynamics, i.e. a particle that cannot move on any time scale after the ther-
modynamic limit has been taken. Than x must have either: more than m=
z− s − 1 neighbors that are occupied and frozen, or, if m or fewer of the
neighbors are frozen (and thus the particle on x could potentially move),
all its unfrozen neighboring sites, either empty or occupied, must them-
selves have more than m occupied frozen neighbors. If this were not the
case, one could move all the unfrozen neighbors out of the way, and then
move the putatively frozen particle from site x. Moving the neighbors at
the same time is possible in such a situation because the constraints on
them are independent since loops that could induce such correlations, do
not exist on Bethe lattices. In other words, moving one of the neighboring
particles away from a site should not affect the ability of its other neigh-
bors to move and an unfrozen neighboring particle can itself move pro-
vided an appropriate set of particles that are further up its branch of the
tree have moved out of the way. One can repeat the above argument to
show that the neighbors of x must each have at least m − 1 = z − s − 2
neighbors along their own branches occupied by frozen particles, or else
all their unblocked neighbors must themselves have more than z − s − 1
frozen neighbors, and so on and so forth. Therefore, the probability P̃ that
a given site is occupied by a frozen particle can be expressed in terms of
Y and B as

P̃ =ρ




k+1∑

j=k−s+1

Y j (1−Y )k+1−j
(

k+1
j

)
+

k+1∑

j=s+1

BjY k+1−j
(

k+1
j

)


 .

(61)
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As a consequence in the ergodic phase Y = B = 0 and P̃ = 0, whereas in
the non-ergodic phase Y and B are strictly positive and thus so is P̃ .17

This result leads to a physical interpretation of the dynamical transi-
tion as a “jamming” transition: at ρc, an infinite set of blocked particles
suddenly appears and concomitantly a breaking of ergodicity occurs.

We have checked the relation between the bootstrap percolation tran-
sition and the dynamical transition by performing numerically the boot-
strap procedure for the case k = 3, s = 1, and verifying that the density
above which a cluster of particles remains at the end of the process is com-
patible with the critical density for the dynamical transition.

5.3.4. Quantitative Results for k = 3, s = 1 and k = 5, s = 2 Models

We now consider in detail the cases k=3, s =1 and k=5, s =3, which
mimic, respectively, the non-trivial square lattice model, and the three-
dimensional cubic-lattice model originally introduced by KA.

In the case k =2, s =1, Eq. (59) give

Y ′ = ρ
(
Y 3 +3Y 2(1−Y )+B3 +3B2Y

)
,

B ′ = (1−ρ)F 3, (62)

F ′ = ρ(Y +B)3.

from which one can immediately see that, at a fixed point with Y >0 also
B > 0 and F > 0. Therefore one can study the transition by analyzing the
fixed point equations for

G≡Y +B (63)

which can be written in polynomial form:

R(G) = G[−1+3ρG−2ρG2 +vρ3G8 −6vρ4(G9 −G10)

+3v2ρ7(G17 −G18)]=0. (64)

17We expect that our derivation of P̃ is correct under the hypothesis that to pick away a
particle during the bootstrap procedure, it is not necessary to pick away before so doing,
an infinite (i.e. diverging with the system size) number of other particles. This should be
roughly equivalent to the hypothesis that an appropriately defined correlation length is
finite, a reasonable expectation except at the bootstrap transition point.
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By direct analysis one can see that there is a fixed point with G=0 which
is stable for any density, while above a critical density, ρc, a second physi-
cal solution appears with positive G; both are stable in this regime. Sepa-
rating these stable fixed points is an unstable one at an intermediate value
of G. As the density decreases to ρ = ρc, this unstable fixed point anni-
hilates with the non-zero stable fixed point at a saddle-node bifurcation
signaled by

∂R(G,ρc)

∂G
=0 (65)

at the fixed point.
The values of the critical density ρc and critical Gc ≡G(ρc) are:

ρc �0.888, Gc �0.758 (66)

The critical density is strictly less than, although only very slightly so, the
critical density ρT = 8

9 , of the much simpler two-branching-subtree perco-
lation problem discussed in Section (5.2).

At ρ =ρc the value of G jumps discontinuously from the low density
value G= 0 to Gc and then increases with a square root cusp: G≈Gc +
C

√
ρ −ρc/ρc, see Fig. 11. Similar behavior obtains for the probabilities P̃

of a site occupied by a frozen particle, as can be obtained from Eqs. (61)
and (62).

For the case k = 5, s = 2, by solving Eqs. (59), a similar transition is
found at a slightly higher critical density ρc �0.915.

5.3.5. Diverging Time and Length Scales at the Dynamical
Transition

Although the dynamical transition in these KA models is discon-
tinuous, there is precursor behavior more characteristic of critical transi-
tions. In this respect, the situation is somewhat analogous to conventional
bond percolation on one dimensional lattices with connection probability
between any two points proportional to the inverse square of the distance
between them.(58)

Indeed from the discussion in the previous subsection, an interpreta-
tion of the mixed nature of the dynamical transition of Bethe lattice KA
models is suggested: the dense cluster of frozen particles that arises imme-
diately at ρ =ρc contains a finite fraction of the particles and it is, at the
same time, fragile in a way similar to incipient infinite clusters at conven-
tional critical percolation. This fragility implies that by removing a tiny,
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but carefully chosen, fraction of the particles, the frozen cluster can be
“melted” and will disappear. Associated with this fragility is a correlation
length that diverges as ρ → ρc from above. The form of the divergence,
∼ (ρ − ρc)

− 1
2 is controlled by the “rate” – in tree levels – of approach

of the iterated probabilities to the fixed point. Physically, this correlation
length is the (chemical) distance beyond which it is unlikely to have to
move vacancies in order for a given particle to be moved.

More significant than the long length scales that appear near the
critical density, are the corresponding dynamical effects. In particular, we
expect a diverging time scale as ρc is approached from below. Unfortu-
nately, our analytic methods, while they take into account the dynamical
constraints, cannot directly be used to compute the dynamical correlations
of primary interest. At this point, we resort to numerical simulations to
study these and other properties of the Bethe lattice models.

Before turning to the numerics, we note that the behavior on Cayley
trees, because of their boundaries which account for a positive fraction
of the volume, might exhibit different phase diagrams depending on the
choice of boundary conditions.

5.4. Dynamics and Numerical Simulations

In order to understand in more detail the character of the dynamical
transition, we have performed numerical simulations of KA dynamics for
the k =3, s =1, model on a random c-regular graph of N =104 sites with
coordination number k +1=4.

In particular we have computed the local density–density dynamic
auto-correlation function C(t) and the corresponding dynamical suscepti-
bility �(t):

C(t) = 1
N

N∑

i=1

〈ni(t)ni(0)〉−ρ2

ρ −ρ2
,

χ4(t) = N

〈(
1
N

N∑

i=1

ni(t)ni(0)−ρ2

ρ −ρ2
−C(t)

)2〉
,

where 〈 〉 denotes an average over the Bernoulli product measure at den-
sity ρ for the choice of the initial configuration at over the Montecarlo
dynamics. The dynamical susceptibility χ4(t) (and its generalization) has
been introduced in ref. 59 and is currently used(7,24) to detect a growing
dynamical correlation length in simulations of glass-forming liquids.
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Fig. 10. color online. Dynamic autocorrelation function C(t) as a function of time for den-
sities 0.85,0.86,0.87,0.875,0.9 (from down to up) on a 10,000-site approximation to a Bethe
lattice with coordination number k +1=4 and single-vacancy assisted dynamics. The dynam-
ical transition is clearly evident between the densities 0.875 and 0.9. The straight line is the
value of the Edwards–Anderson order-parameter obtained by the approximation discussed in
the text.

The results for C(t), plotted in Fig. 10, show that the equilibration
time grows and seems to diverge at the critical density found from the
quasistatic analytical calculations (see Eq. (66)). Indeed, for ρ < ρc − �,
C(t) tends to zero at long times but with a characteristic decay time that
increases at higher densities. Here �, the precision obtained for ρc, is
0.0075. For ρ <ρc +�, C(t) no longer appears to decay to zero but seems
to approach a non-zero plateau whose magnitude it is natural to call an
Edwards–Anderson parameter by analogy with spin glasses. Since at the
critical density there should be NP̃ (ρc) frozen particles, the value of the
Edwards–Anderson parameter qEA ≡ limt→∞ limN→∞ C(t) has two contri-
butions coming from sites that are occupied respectively by a frozen par-
ticle or by a vacancy that can never move. These can be computed exactly
from the quasi-static computation developed in the previous section. How-
ever there is a third contribution that corresponds to

lim
t→∞

1
N

N ′∑

i=1

〈ni(t)ni(0)〉−ρ2

ρ −ρ2
,
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Fig. 11. color online. The probability, G (defined in the text) as a function of density for
k=3, s =1 Bethe lattice as obtained from the stable solution of Eq. (64). In the inset log(G−
Gc) is shown as a function of log(ρ −ρc) in the vicinity of ρc showing the square root depen-
dence.

where the index i = 1, . . . ,N ′ runs only over the sites whose occupation
number changes during the dynamics (i.e. they are not occupied by vacan-
cies or frozen particles). This contribution to qEA is more cumbersome to
compute. In this paper we just give a rough approximation which consists
of assuming that the long-time limit of 〈ni(t)ni(0)〉 on these sites – which
consist of many small disconnected clusters – is equal to the density of
particles within the full set of N ′ dynamic sites. This can be computed
from the quasi-static analysis developed in the previous section. Compar-
ison with numerics shows that this approximation works rather well (see
e.g. Fig. 10).

A dynamical quantity that can be computed exactly is the long-time
limit of the persistence function: the probability that the occupation vari-
able of a given sites has not changed from its initial value for an interval
of time t . The long-time plateau of this, by definition, is equal to the frac-
tion of sites that are occupied by either a frozen particle or by a vacancy
that can never move.

Plots of the dynamical susceptibility, χ4(t), found in the simulations
are shown in Fig. 12 for various densities: these appear consistent with
a divergence at the critical density. More precisely both the height of the
peak and the characteristic time scales at which this occurs, appear to
diverge at ρc.
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Fig. 12. color online. Dynamical susceptibility χ4(t) as a function of time for densities
0.85,0.86,0.87, 0.875 (from down to up) on a 10,000-site approximation to a Bethe lattice
with coordination number k +1 = 4 and single-vacancy assisted dynamics.

5.4.1. Configurational Entropy

If phase space breaks into a sufficiently large number of different
ergodic components, some of the equilibrium entropy density will be asso-
ciated with the logarithm of the number, Ne, of distinct components:

Sc(ρ)= ln Ne/V (67)

where V is the total number of sites. This is referred to in the glass liter-
ature as the configurational entropy.18

For KA models on Bethe lattices one can find a lower bound for the
configurational entropy by observing that all the configurations belonging
to the same ergodic component must have the same cluster of frozen par-
ticles, therefore Ne is at least as large as the number of different sets of

18This terminology is somewhat misleading since in general statistical mechanics “configura-
tional entropy” refers to the sum over all configurations (after having integrated out the
momenta). For glasses, its meaning is the contribution to the entropy density coming from
the large number of different ergodic components. The other contribution to the entropy is
related to the number of configurations within the given ergodic component.
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frozen particles, Nf , which has an entropy density,

Sf (ρ, ρF )= 1
V

ln Nf . (68)

Furthermore, the entropy of the non-frozen sites, Si(ρ, ρF ), can be bounded
above by the number of ways of putting Vρ −VρF particles on V −VρB sites,
where ρF is the density of frozen particles at total density ρ:

Si(ρ, ρB)� (1−ρB) ln(1−ρB)− (ρ −ρB) ln(ρ −ρB)− (1−ρ) ln(1−ρ).

(69)

Since the total entropy density,

S(ρ)=−ρ ln ρ − (1−ρ) ln(1−ρ)=
(
Sf (ρ, ρ̃F )+Si(ρ)

)
, (70)

and we know that ρ̃F = P̃ that was computed earlier, see Eq. (61), we
obtain a lower bound for the configurational entropy

Sc(ρ)�Sf (ρ, P̃ )�−ρ ln ρ − (1− P̃ ) ln(1− P̃ )+ (ρ − P̃ ) ln(ρ − P̃ ). (71)

In Fig. 13 this lower bound is plotted as a function of density for the case
k = 3, s = 1. Note that, among other factors, we have ignored in this esti-
mate the existence of empty but blocked sites: the effect of these will be
to lower the entropy of the unfrozen particles.

In conclusion, our results from lower bounds and analytical and
numerical analysis of the dynamical transition support the expectation
that the configurational entropy jumps form zero to a non-zero finite value
precisely at ρc. For ρ >ρc, the configurational entropy decreases with the
decreasing vacancy density and overall entropy; it vanishes at ρ =1.

5.5. Bethe Lattices with Loops

In order to investigate whether the absence of loops is the essential
reason for the existence of a phase transition on Bethe lattices, we briefly
consider structures that are tree-like on large scales, but do have loops.

Specifically, consider the rooted tree composed of triangles with one
vertex pointing downwards and the other two vertices each being the bot-
tom vertex of another triangle and hence the root of a tree. Then define
a Bethe lattice with triangular loops as the graph obtained by taking two
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Fig. 13. Lower bound, Sb(ρ), on the configurational entropy – logarithm of the number of
frozen configurations per site – as a function of density for the k = 3, s = 1. Bethe lattice is
indicated by the dotted line; this bound is obtained from Eqs. (71) and numerical solution
of Eqs. (61), (62). Below the critical density ρc � 0.888, the lower bound jumps to zero. The
straight line is the equilibrium entropy.

Fig. 14. A branch of a Bethe lattice with triangular loops.

such lattices and merging the free vertices of the two roots (see Fig. 14).
The coordination number of such a tree is z = 4 and the branching ratio
k=2. This is an example of a cactus, or Husimi, tree(60) with primary clus-
ters of three vertices and three branches departing from each cluster.

Consider the KA model with s = 1 on the triangular tree defined
above. It is useful to focus on the set Ei of configurations of the subtree
rooted at triangle i, such that the bottom vertex is occupied and a vacancy
cannot be brought down to it without using vacancies below it on the tree.
Let P be the probability of such an event. If a configuration, η has all
three sites of triangle i occupied and all of the subtrees rooted on trian-
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gles two levels up from i, i1, . . . , i4, have configurations ∈ Ej
i , then the

configuration of the subtree rooted at triangle i belongs to Ei . The same
is true for any configuration, η, that has the three sites of i all occupied,
and η∈E

ĩj
for three of the four subtrees rooted at the {ij }. Therefore

P �f (P )=ρ3
(
P 4 +4P 3(1−P)

)
. (72)

Since P = 1 is a fixed point of P ′ =f (P ) when ρ = 1, at sufficiently large
density there exists a P̄ > 0 such that f (P̄ )= P̄ . If one iterates down the
tree for actual P s, then the inequality (72) implies that, starting from an
initial condition P0 = P̄ + ε >P̄ , all the subsequent P ’s, P1, P2, . . . , will be
larger than P̄ . Indeed, since the f (x) is monotonically increasing in 0 <

x < 1, P1 � f (P̄ + ε) > f (P̄ ) = P̄ and the same is true at any subsequent
step. Therefore, the full fixed point must have P ∗ >P̄ > 0. Thus for suffi-
ciently large ρ, P ∗(ρ) will be non-zero and the system in a frozen phase.
It immediately follows that the density of frozen particles, P̃ is non-zero.

A generalization of the argument in Section 5.2 allows one to prove
that there exists a transition at a non-zero density from a regime where
P = 0 to a region where P is positive. Let E〉 be the complement of
Ei defined above. A configuration is definitely in Ei if the four branches
rooted at the four triangles two levels up from i are in Eij . The same is
true if just three of them are in Eij and furthermore one can have or bring
vacancies in the highest sites of the triangle which is just above the site
which is in the same triangle of the site that cannot have the vacancy. This
sufficient condition for E〉 yields and upper bound on P :

P �1− (1−P)4 −4P(1−P)4, (73)

which implies – as in Section 5.3.1 – that P has a jump from zero to a
non-zero value at the critical density.

The arguments given above can be extended to KA models with any
constraint parameter, s, on generalized Bethe lattices with n-polygonal
loops for any n, i.e. trees composed of polygons of n vertices, each which
is also a vertex of another polygon. To prove the existence of the tran-
sition, it is sufficient to consider the set of configurations Ei such that a
vacancy is not and cannot be brought down to the bottom vertex i with-
out using vacancies below. By the same argument as above, we can bound
the probability P of such an event by

P �ρn
(
P (n−1)2 + (n−1)2P (n−1)2−1(1−P)

)
(74)
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which implies again that P > 0 for sufficiently high density. Generalizing
the procedure used for the triangular tree one obtains an bound in the
opposite direction:

P �1− (1−P)(n−1)2 − (n−1)2P (n−1)2−1(1−P) (75)

which implies, as above, that the transition is discontinuous.
Another class of Bethe-like lattices with loops is also instructive to

analyze. Consider, as an example, starting with normal Bethe lattice with
connectivity four and replacing each site by a square lattice �∈Z

2 of lin-
ear size L connected to to other squares along its edges (see Fig. 15).
If we arrange the lattice as a tree with one branch pointing down from
each vertex, the “upwards” branches from a square consist of an upwards
extension of the lower branch and side branches emerging perpendicularly
from the other two sides. Locally, this looks like a square lattice except
at the corners: the corner sites still have four neighbors – albeit on three
other squares – but have eight second neighbors that are each on separate
“sheets” in contrast to the four second neighbors on a regular square lat-
tice each of which can be reached in two distinct ways.

Drawing the tree of squares as described above immediately implies
that for the s = 1 KA model on which we will focus, there exist infinite
networks of frozen particles. As for the normal square lattice, these consist
of two-wide fully occupied bars, each either extending to a faraway bound-
ary, or beginning and terminating at T-junctions with other such bars. But
such a network, because of the large scale topology of the Bethe lattice, is
very different from its real-square-lattice counterpart. It is still very frag-
ile but there are so many potential T-junctions, which are independent of
each other if the bars emerging from them go onto different branches,
that such a frozen network exists almost surely at sufficiently high den-
sities. The reason for this is simple: consider a vertical bar coming into

(a) (b) (c)

Fig. 15. Starting from a Bethe lattice of connectivity k + 1 (a) we substitute each site with
a square of side L thus obtaining a Bethe lattice with loops (c). In the figure we have chosen
k +1=4 and L=3.
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a square, i, from below. There are at least two possibilities: the bar can
continue through i and into the square above it, or it can end at a T-
junction with a bar that extends horizontally into both of the other two
neighboring squares of i. Since the probabilities, T , that the extensions
into each of the three neighboring squares exist and are themselves part of
infinite frozen networks on their own sub-trees – i.e., excluding square i –
are independent of each other, one can bound from below the probability
that square i has a bar rising vertically from its lower boundary and either
extending through the top boundary or ending at a T-junction with a bar
that extends into the two side boundaries, in terms of T and ρ. As in cases
we have already analyzed, this can be used to show that there must be an
infinite frozen network at sufficiently high densities. One can likewise show
that the transition to the frozen phase will be discontinuous.

To show that the transition on this Bethe lattice of squares is dis-
continuous, it is useful to focus on the framing by vacancies of individual
squares, in the sense used for the conventional square lattice. Consider the
event that, without taking advantage of possible vacancies in the square
below I , one cannot frame the configuration in I , i.e. reach a configura-
tion with all the boundary sites of I empty. Call X the probability of such
an event. If, without using the square i, the three squares left, right and
above I can all framed, or if either the above and left or the above and
right squares can be framed, or if the left and right squares can be framed
and in the square I the first row is empty and all the others are occupied
then the square I can definitely be framed. These possibilities are suffi-
cient, but not necessary. Therefore

X �1− (1−X)3 − [2+ρL2−L(1−ρ)L]X(1−X)2 (76)

which is incompatible with a continuous transition by an argument similar
to that used for other Bethe lattices.

In general, the existence of finite loops on these decorated Bethe lat-
tices, makes the motion of particles less restricted that on a regular Bethe
lattice. Indeed, there will be configurations in which two or more vacancies
can be ejected from one branch up into another, and by making use of these,
trigger the potential ejection of a larger number of vacancies down from the
second branch. This process can depend on configurations arbitrarily far up
in the two branches. Such ejected vacancies could in principle extend their
influence arbitrarily further down the tree and render all particles mobile,
even when the density is above the critical value for the loopless Bethe lattice.
But the above results show that for low enough vacancy concentration this
will not occur: the system will be in a partially frozen state like that of the
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simple Bethe lattices. The above picture does, however, suggest a route to
estimating the critical density as a function of L.

The trees-of-squares we have been studying interpolate between simple
Bethe lattices, for L= 1, and a full square lattice for L=∞. Therefore on
the trees-of-squares, in the limit L→∞ the critical density, ρc(L) should go
to one. But how does it approach one? From scaling arguments, one would
guess that the framing probabilities on the tree will be functions of the ratio
of L to one of the characteristic lengths of the infinite square system: i.e.
functions of either L/ξ(ρ), or L/�(ρ). Naively, one might expect that the
behavior would be controlled by the large crossover length, which determines
the spatial density, 1/�(ρ)2, of mobile cores and thus the probability that
squares of size L are frameable. However, this ignores the effects of possible
help from vacancies moved from other squares and the correct behavior can
be seen as follows. Consider one of the L by L squares that can be framed
by vacancies. The probability that this framing can be continued all the way
through a given one of its neighboring squares to make an L× 2L framed
rectangle, is of order [a(1−ρ)L]L with an order-one coefficient a. This will
be substantial as long as ξ(ρ)>L – in spite of the fact that the probability
the original square was frameable is very small unless L∼�(ρ). The cru-
cial observation that leads to a scaling with ξ , is a consequence of the tree
structure: once the neighbor square of i has been framed together with i,
as above, each of the three other neighbors of this neighbor can potentially
join the frame as there already exist complete rows of vacancies along one
of their sides from which the framing can be extended. Since any of these
squares that joins the frame gives rises to another three potential squares
that might join as well, if the original square frame can be extended out in
several directions to make a small frameable tree, it become likely that it can
be extended much further, indeed, to infinity. Thus the crucial condition for
extending the framing to infinity is that there be a substantial probability of
a frame around one square being extendable across one of its neighboring
squares – even when the probability that a single square is frameable on its
own is beery small.

We conclude that the critical density, ρc(L) for the s = 1 KA model
on a tree of L×L squares, will be given by

ξ(ρc)=bL (77)

with some order-one coefficient b. As ξ ∼ ln[1/(1 − ρ)]/(1 − ρ) for high
densities, this yields

ρc(L)≈1− B ln L

L
(78)
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with some coefficient B. Note that this form is the same as that suggested
by the argument given above for the appearance of an infinite network of
bars of frozen particles, since the probability of a two-wide fully occupied
bar crossing a square is of order Lρ2L which is of order one at ρc(L).

6. FREDRICKSON ANDERSEN MODEL

The FA model is a spin model with kinetically constrained dynamics
that is similar to the KA model but without a conservation law: roughly
speaking KA models are FA models with dynamics that conserves the
number of particles. Some of the results discussed previously for KA
models have been previously obtained for FA models:(9,29,44) for exam-
ple irreducibility on some hypercubic lattices for the non-trivial range of
the constraint parameter. However, there are important results, like the
absence of a ergodic/non-ergodic transition, that have not been proven pre-
viously, as well others, such as the dependence of the relaxation time scale
on density, that can be made sharper. In the following we briefly discuss
how these new results on FA models can be obtained using the same tech-
niques that we have developed for KA models.

6.1. Definition of the Model

Let � be an hypercubic d–dimensional lattice and f an integer
parameter in the range 0, . . . ,2d. The FA model(29) is a facilitated Ising
model with “occupation” variables ηx ∈ {0,1} – configuration space �� =
{0,1}|�|. The FA model is conventionally defined in terms of spin vari-
ables; we use occupation variables to make comparisons with KA models
more natural. The occupation variables can “flip” with rate

cx(η) :=
{

0 if nx(η)�f

min
(
1, exp−�H

T

)
otherwise,

(79)

where

nx(η) :=
∑

y∈�
|x−y|=1

(1−ηy), (80)

i.e. nx is the number of empty neighbors of x and the change in energy
�H =H(ηx)−H(η) comes from the non-interacting Hamiltonian

H =−h

2

∑

x

ηx (81)
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with h a positive coefficient that determines the fraction of occupied sites
in equilibrium. These rates satisfy detailed balance with respect to the
trivial equilibrium product measure

µ�,T (η)=
∏

x∈�

(
exp(βh)

1+ exp(βh)

)ηx
(

1
1+ exp(βh)

)1−ηx

(82)

with β =1/T : this corresponds to Bernoulli measure with density

ρ = exp(βh)/(1+ exp(βh)). (83)

In contrast to KA models,
∑

x∈� ηx is not conserved in FA models: a
“flip” at a single site corresponds to the birth or death of a particle.

In the unrestricted case f = 0, the FA dynamics is simply Glauber
dynamics for uncoupled Ising spins in a magnetic field: occupied sites cor-
responding to up spins and vacant sites to down spins. But for positive f ,
a site can change only if at least f of its nearest neighbors are empty (i.e.
their occupation variables equal zero), we refer to empty sites as facilitat-
ing and to f as the facilitation parameter. For f > d, fully occupied hy-
percubes will be frozen. We thus restrict consideration to 1�f �d. Since
energy favors occupied sites, in the low temperature regime most poten-
tial flips will not be allowed. Therefore we expect dynamics to be slow in
this regime, as for the high density regime of KA models. On finite lattices,
as for KA models, there is not a unique invariant measure: there exist
blocked configurations and the FA dynamics are not ergodic. But irreduc-
ibility in the thermodynamic limit for f �d has been proved for two and
three – dimensional hypercubic lattice FA models, (44,51,61) (see ref. 9 for
a review).

There is considerable similarity between KA and FA models: in the
former, a particle cannot move if it has more than m occupied neighbors;
in the latter it cannot flip to vacant if it has more than 2d −f occupied
neighbors. Thus f plays a similar role to 2d −m, or, equivalently, to s +1,
with s the KA model parameter that restricts a vacancy from moving if it
has fewer than s neighboring vacancies. In addition to their conservation
law, the KA models differ from FA models because of their restrictions
on the neighbors of two sites (the initial and final sites for the jumping
particle) for each possible move.

6.2. Irreducibility and Ergodicity

The presence or absence of frozen configurations in FA models
is simply related to bootstrap percolation. Consider a configuration of
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occupation variables and perform a boostrap procedure by removing at
each step all particles that have at least f empty neighbors. If, at the end
of this procedure no particles remain, the initial configuration belongs to
the irreducible component that contains the totally empty configuration
(called the high temperature partition by FA). This is exactly conventional
bootstrap percolation. But all the “moves” made in this bootstrap pro-
cedure are allowed in the corresponding FA model. Therefore, using the
results for the absence of an unpercolated phase for bootstrap percola-
tion,(51,61) one can immediately conclude that in the thermodynamic limit
irreducibility holds for FA models at any temperature as long as f �d. In
contrast to KA models for which bootstrap moves would not be allowed,
for FA models bootstrap results are sufficient to conclude irreducibility in
the thermodynamic limit. The result proven for the two and three-dimen-
sional cases(44) is trivial to generalize to higher dimensional cases using the
bootstrap percolation results.(62) Furthermore, the crossover length LB(ρ)

that characterizes the bootstrap procedure is not only a lower bound for
the crossover length, �(T ) of FA models, (as was the case for KA mod-
els) but coincides with it under the change of variables ρ → exp(βh)/(1 +
exp(βh)).

As we explained previously, irreducibility in the thermodynamic limit
is not a sufficient condition for ergodicity, which is the physically interest-
ing property for dynamics. However, ergodicity can be proven as in Sec-
tion 2.5, using again irreducibility and the product form of equilibrium
measure.

6.2.1. Transition on Bethe Lattices

On Bethe lattices, FA models with positive f displays a dynamical
transition and aging dynamics.(63,64) This is a natural expectation that fol-
lows from the bootstrap percolation transition on Bethe lattices: our anal-
ysis for the KA model – part of which involved removing particles as
allowed in FA models – leads, in the FA case on a Bethe lattice, to exactly
the same bootstrap percolation equations as in ref. 50. We will not discuss
further Bethe lattice FA models.

6.3. Dynamics

We now turn to the dynamics for FA models on hypercubic d-dimen-
sional lattices.

It is well known from previous results and simulations that the behav-
ior is strikingly different for the case f = 1 than for larger f .(5,9,29) With
f = 1, a single vacancy can facilitate the flip of any of its neighbors,
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therefore relaxation does not require cooperative processes and time scales
are proportional to the density of vacancies, as confirmed by numerics.
This least-restricted FA model is loosely analogous to the s −1 KA mod-
els normal hard core lattice gas (which would correspond to KA with
s = 0) for which a single vacancy can freely move in an otherwise totally
filled lattice: in the FA case, a vacancy can “move” by flipping a neigh-
boring occupied site, and then flipping to occupied at the original site.
Nevertheless, this analogy cannot be take too far: interesting – although
not cooperative – behavior does exist for f = 1 FA models. Indeed it has
been shown in ref. 19 that in dimension less than four vacancies cannot
be considered as independently diffusing defects (in contrast to the trivial
KA model in which single vacancies can move). The interaction between
vacancies, in particular their creation and annihilation, lead to a reaction-
diffusion process that belongs to the same universality class as directed
percolation in three dimensions.

For more restricted FA models with the facilitating parameter f >1
neither a single facilitating vacancy, nor a finite cluster of them, can enable
all the other sites to flip if these are initially all occupied: as for KA
models, a finite vacancy cluster can never breakthrough a slab that is infi-
nite in 2d −f +1 directions and of width two in the other f −1 directions.
Hence, cooperative processes must be involved in the low temperature
relaxation of these FA models. The nature of the cooperative mechanism
that causes equilibration has been conjectured by Reiter.(44) It is very sim-
ilar to the one we discussed for the KA model in ref. 40 with the corre-
spondence f → s +1.

Consider for simplicity the two-dimensional case with f = 2 at tem-
perature T and focus on regions of an infinite lattice that are frameable
– in the KA sense with s = 1 (see Section 2.1) – out to linear size ξ(ρ),
with ρ(T ) defined in (82) and ξ as in (9). These we refer to as mobile
cores.(40) It is easy to check that using moves allowed by FA rules every
occupation variable inside the core can be changed to zero. On a typical
line segment of length ξ(ρ) outside the special core regions, there is likely
to be at least one vacancy. The existence of such vacancies around most
places a core could be, ensure that a single core can diffuse through typ-
ical regions of the system – and eventually everywhere. Reiter conjectured
that the diffusion of these macro-defects is the dominant mechanism for
relaxation in the low temperature regime of FA models. From knowledge
of the temperature dependence of ξ and of the spatial density of mobile
cores, ρD,– both given by those of the corresponding KA model at the
same vacancy density, ρ, see Section 6.1 – together with the characteris-
tic time τD, within a core, one can make a prediction for the temperature
dependence of the overall relaxation time. Neglecting, as for KA models,
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the interactions, annihilation and creation of the macro-defects, the bulk
relaxation time is ref. 40:

τ ≈ τD

ρD

. (84)

This is the time after which typical sites will be changed because a macro-
defect has passed by.

Reiter assumed that the typical timescale τD for the motion of a
macro–defect of size l grows as expKl with K a positive constant. How-
ever, we have found – analytically and numerically – that this is not the
case for the KA model: τD increases more slowly with l as expK

√
l(40)

(see also Section 4). This result should carry over to the FA case since
it is easier for a macro-defect to move with FA dynamics than with KA
dynamics, yet the dynamics within a core is dominated by entropic barri-
ers(40) which will be the same for both models. As a consequence of the
sub-exponential slowing down within a core, the leading contribution to
the structural relaxation timescale τ is given by the density of defects and
not by their timescale to move. The same argument should hold for any d,
1 <f � d giving τ ∝ρD � 1/�d,f −1(ρ(T ))d , where �d,f −1(ρ) is the cross-
over length of the corresponding KA model and ρ(T ) is the equilibrium
density of vacancies at temperature T , see Eq. (83). For the case d =2, f =
2, we thus have the exact leading low temperature behavior of log τ :

τ � exp− 2c∞
1−ρ

, (85)

where 2c∞ � 1.1 (see Eq. (54)). Numerical simulations on a square lat-
tice agree well with the above prediction.(26) However one has to be care-
ful because of strong finite size effects as discussed for the KA case. And
there is another complication that might arise in the FA case: the fact
that the independent defect diffusion assumption fails in the f = 1 case
for d < 4,(19) suggests it will also for larger f . However if, as for f = 1,
the fluctuations in d <4 just change (slightly) the dynamical exponent that
relates time and length, then the scaling of τ with the density for the d =2,
f =2 case would be the same as in (85) but perhaps with a (slightly) ren-
ormalized constant c∞. (In the more cooperative cases for which there are
at least two iterated exponentials, a change in the dynamical exponent may
not even change the leading asymptotic behavior of the relaxation time,
but this needs a more careful investigation.)
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7. CONCLUSIONS

We have analyzed in this paper a class of kinetically constrained lat-
tice models which had previously been studied primarily via numerical
simulations. For the KA models on hypercubic lattices, we have found that
the behavior in infinite systems, in contrast to what was suggested by the
simulations, is simple: either the system is non-ergodic for all densities
because of the existence of finite frozen clusters, or it is ergodic at all den-
sities. Nevertheless, in the latter cases dynamics at high densities is intrin-
sically collective and thus non-trivial. We found that there are two length
scales that characterize this collective dynamics: The smaller one, ξ , is the
linear dimension of a minimal set of vacancies that is typically mobile in
a system of density ρ; such regions of size ξd are the mobile cores whose
motion allows rearrangements of other regions. The longer length scale, �,
is the typical spacing between mobile cores. Therefore � is the crossover
length that determines whether finite-size systems will typically be almost
ergodic, with one irreducible set dominating configuration space, or have
their configuration space broken up into many large sets. Furthermore, the
same length controls the high density behavior of relaxation times, which
scale as the density of mobile cores, therefore as 1/�d . The manner in
which these lengths diverge as the density approaches unity depends on
the dimension and the constraint parameter, s. But, although we have not
discussed it thus far, there is considerable universality.

7.1. Universality

For simple lattices other than hypercubic, the behavior can be guessed
by analogy with the hypercubic cases.

If there are no finite frozen clusters, but infinite frozen configurations
do exist, then the minimum dimension of frozen structures will determine
the behavior. If the minimal frozen structures are d −1 dimensional, then
the frames of vacancies used to show irreducibility will be one-dimensional
and the core size will grow with density as,

ξ(ρ)∼ ln[1/(1−ρ)]
(1−ρ)p/(d−1)

, (86)

where p is the number of nearest neighbor vacancies needed on each side
to enable a frame to grow. The crossover scale grows roughly as � ∼ eξ .
This least-restricted collective behavior obtains for s =1 on hypercubic lat-
tices in all dimensions, and also for, e.g., two-dimensional triangular lat-
tices with s =2 (s =1 has mobile pairs of vacancies); and three-dimensional
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fcc lattices (close-packed) with s =3 (s =1 or 2 models have small mobile
clusters of vacancies). In all these cases p =1.

If the smallest frozen structures are d − 2 dimensional, framing by
two-dimensional planes is needed: this gives rise to

ξ ∼ exp
(

c

(1−ρ)p/(d−2)

)
. (87)

This form cannot occur in two dimensions. In three dimensions, it obtains
for cubic-lattices with s =2, as well as for fcc lattices, for s =4 and s =5,
these two cases only differing by the numerical coefficient.

In three dimensions, the above are the only possibilities in the same
general class that we have been studying, but in higher dimensions, the
iterated exponential forms of (35) can occur. As we have shown, on Bethe
lattices – expected to be loosely related to some high dimensional limit –
an actual dynamical transition at a non-trivial density, ρc, does occur for
KA models.

This immediately suggests a crucial question: Do some finite dimen-
sional models exist with this type of dynamical transition? Two candidates
in the literature are infinitely thin hard rods on a lattice(65) and a space
filling self-avoiding chain on a lattice.(66) We leave further exploration for
the future.

But the issue of apparent transitions does already arise in the simple
KA models. As mentioned at the end of Section 4 dramatic slowing down
in finite dimensions can occur near an almost sharp avoided transition
associated with a crossover from non-cooperative to cooperative dynam-
ics. In particular, some high dimensional lattices – including already some
three dimensional lattices – are approximately tree-like out to some num-
ber of neighbors; if the dimension increases while the coordination num-
ber remains fixed, such tree-like local structure suggests that a ghost of
the Bethe lattice transition with the same local structure will become more
and more apparent. More generally, it is likely that in the limit of high
dimensions, models that have low-dimensional frozen structures – such as
s = d − 1 on hypercubic lattices which has frozen one-dimensional bars –
will, as the density increases, have increasingly rapid crossovers that appear
more and more like an actual transition.

In this paper, we have studied Bethe lattices with loops that interpo-
late between the finite dimensional lattice and the standard Bethe lattice.
In this case, there is always a transition although it is pushed to a den-
sity that approaches one when the finite-dimensional regions become large.
From the other direction, it would be interesting to analyze a Kac-like
interpolation for a fixed finite dimensional lattice with longer and longer
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range connections which converges in a certain limit to a Bethe lattice. In
this case, the transition will presumably never occur, but the cross-over will
become sharper and sharper near the critical density on the Bethe lattice.

7.2. Comparison with Mean-field Approaches

We have found that the generic behavior of KA models on Bethe lat-
tices (exceptions being s = k − 1), has a transition with features similar
to both first order and critical transitions. Although the density of fro-
zen particles jumps discontinuously at the critical density, there are pre-
cursor effects as the transition is approached from the frozen phase and,
at least for some quantities, also from the ergodic phase. In particular, we
have seen that divergence of characteristic length and time scales is appar-
ent in the dynamic density–density correlations and the related dynamical
susceptibility.

This mixed behavior, as well as several more specific features, is sim-
ilar to that found in certain mean-field-like theoretical analyses conjec-
tured to be relevant for glass transitions. In particular, spin models with
quenched random interactions that couple collections of p > 2 spins have
been studied.(32,67) It turns out that the infinite-range versions of such ran-
dom p-spin models have a real thermodynamic transition at a critical tem-
perature, however interesting dynamical behavior commences sharply at a
higher temperature, TD, without singularities in static properties. This is
interpreted as the onset of ergodicity breaking: below TD the equilibrium
measure is fractured in exponentially many metastable “states” (“TAP”
states which are locally stable solutions of the self-consistent mean-field
equations); the large number of these give rise to a configurational entropy
density, Sc, that jumps to a non-zero value at TD. As the temperature is
lowered further, Sc decreases, vanishing at the thermodynamic transition.
Due to the presence of quenched random disorder p-spin models would
seem to have little to do with glasses which must generate their own ran-
domness, but it has been shown that some mean-field approximations to
non-random models, in particular the mode-coupling approximation,(31)

give rise to self-consistent integral equations with very similar structure to
the one of this models.(32) In particular, mode coupling equations give rise
to an analogous ergodicity-breaking transition at a finite. We find that the
same properties are shared by KA models on Bethe lattices, for which at
a finite critical density the configuration space is broken into many ergo-
dic components and the configurational entropy jumps to a non-zero value
and then decreases at higher densities (here the thermodynamics is trivial
and, hence, SC equals zero only at unit density). In addition, the auto-
correlation function, C(t), and the associated susceptibility, χ4(t), which
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we computed numerically for Bethe lattices with k = 3, s = 1, behave sim-
ilarly to those found for the infinite range random p-spin models and in
the Mode Coupling Theory.(59,68,69) Indeed, even the off-equilibrium aging
behavior of KCM on Bethe lattices is quite similar to the one obtained for
mean-field quenched random systems.(64)

While tempting to conclude that these behaviors are all manifestations
of the same physical phenomena, one must be careful. In particular the
dynamical transition in KA models on Bethe lattices is a reducible/irreduc-
ible transition whereas for p-spin models the irreducibility is guaranteed
and the breaking of the ergodicity is due to the thermodynamic limit (i.e.
p-spin models are irreducible and hence ergodic on finite volume, how-
ever an ergodicity-breaking transition occurs in infinite volume due to the
existence of a thermodynamic transition). Nevertheless, to explore whether,
and in what sense, some of the mean-field approximations might capture
some of the essential physics of more realistic finite dimensional models,
the possible connections to the KA models are worth exploring further.

7.3. Experimental Issues and Prospects

Kinetically constrained lattice gas models, while they may capture
some of the important features of glass transitions – or almost tran-
sitions – clearly have major flaws. First, in any real system, rates of
local processes cannot strictly vanish. Thus there will also be some con-
straint-violating processes. Second, while lattice models are often good
approximations for static properties, for dynamics of systems in which the
geometry and/or bonding is believed to play an important role, it is dan-
gerous to appeal to universality arguments for the validity of lattice mod-
els. This is especially true if the length scales of the important processes
never get very large, as is believed to be the case for glasses.(3)

Both of these issues merit much further attention. In particular, one
should at a minimum consider the effects of a low rate of constraint-
violating particle motions within the lattice model framework. In practice,
the neglect of certain processes may be a good approximation on a wide
range of time scales. For example, if there are chemical bonds with ener-
gies much larger than kBT , then the ratio of the rates of processes between,
e.g., those that require breaking of two bonds and those that require break-
ing three or more, may be very small. A – and arguably the – fundamental
problem of dynamics near glass transitions is the large and rapidly onsetting
increases in the effective activation barriers. Thus, looking for an explana-
tion that involves a rapid crossover from domination by a relatively fast
process to freezing out of this and the ensuing domination of relaxation by
a much slower process, is surely a productive direction.
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The issue of continuum versus lattice models is a trickier one. If geo-
metrical constraints really dominate near glass transitions, then one needs
to consider how to model the interplay between energetic and entropic
barriers, even if the former only arise from repulsive interactions that are
not entirely hard-core. In principle, from simulations or from computa-
tions of more realistic continuum models of molecular interactions, one
may be able to extract effective rates for various local processes (see ref.
12 for an investigation in this direction). If temperature changes dominate
over density changes(70) the effective density parameter in a lattice approx-
imation will not be simply related to the actual density because of soft-
core effects. Nevertheless, if free-volume ideas of glass transitions are rele-
vant, one should be able to work in terms of some effective density – with
“vacancies”, or at least mobile ones, representing the free volume. Because
of local expansion and contraction, however, the free volume is in general
not conserved. One might expect the particle conservation to play a cru-
cial role in KA models. In fact, this is not the case, as the non-conserving
FA model shows very similar behavior to KA models. Presumably, a bet-
ter approximation would conserve (effective) density most of the time, but
not always.

We leave these issues and any attempts at direct comparisons with
experiments, for future papers.
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